ACTSEA2021 7th International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications toward a Low Carbon Society NOV. 15 – NOV. 17, 2021 Virtual Conference National Taipei Unversity of Technology, Taipei, Taiwan #### Organized by: #### **Endorsed by:** **Materials Research Society-Taiwan (MRS-T)** **The American Ceramic Society** The European Ceramic Society The Ceramic Society of Japan The Korean Ceramic Society The World Academy of Ceramics ### **Sponsored by:** Ministry of Science and Technology, R.O.C. Ministry of Education, R.O.C. **National Taipei University of Technology** # 足您所有能源研 全獨立多頻道恆電位儀/交流阻抗儀 目前最受歡迎的電池測試系統! 可擴充至16個頻道USB/乙太網路雙連結 800A/60V電流擴大可串接做電池堆測試 軟體永久免費更新 全獨立多頻道恆電位儀/交流阻抗儀系統 新技術 掃描速率最快可到1us 120A/48V電流擴大可串接做大電流測試 交流阻抗頻率範圍 7MHz到10μHz 軟體永久免費更新 ### BioLogic SP-50e / SP-150e 方便攜帶的單/雙通道 恆電位/交流阻抗系統 最大電流: ±1A (可擴大到800A)(SP-150e only) 經濟實惠 操作簡易 便於攜帶 好上手 可同時控制三個電極 軟體永久免費更新 ### Bio Logic BCS-8XX 每頻道內建交流阻抗 $(10 \,\mathrm{m\,Hz} \sim 10 \,\mathrm{k\,Hz})$ 頻道可無限擴充 最低電流可量測到0.2nA(解析度) 快速切換充/放電模式(2ms) 通過歐規測試認證(CE)EN 取樣數無限制 穩定乙太網路連線 頻道並聯後應用高電流測試(120A) 精準度最高達0.01% BT-Lab全球最受歡迎的軟體介面 包含所有分析工具 SECM Scanning Electrochemical Microscopy ic/ac SECM SVET Scanning Vibrating Electrode SKP Scanning Kelvin Probe **LEIS** Localised Impedance Spectroscopy SDS Scanning Droplet System ## BioLogic SEMSO-3000 光電化學系統 提供180-1049nm/950-1700nm及高解析光譜儀 執行CV、OCV、CA、CP時,可與穿透率及吸收度同步進行 氧化還原過程中,電壓電流改變時可觀察及取得吸收度的變化量 #### Biologic RDE BluRev 旋轉電極 可控轉速 100~10,000 rpm RDE材質 Pt、Au、GC 可由軟體直接操控 #### 電化學儀器 恆電位儀 交流阻抗 多頻道恆電位儀 電化學掃瞄系統 各式電極與耗材 #### 環境標準品 戴奧辛 溴化物 全氟化物 PFOA/PFOS PAH · PCB #### 電池檢測 多頻道充放電 交流阻抗分析 電池壽命預測 液流/燃料電池 ## AUR ## 北極光科技 新能源領導商 太陽能 二次電池 電化學 TEL: 02-2375-7239 FAX: 02-2331-1829 sales@aubotech.com 台北總公司: 100台北市中正區懷寧街42號4樓 石英振盪儀(EQCM)、光電化學、旋轉電極 其他標準品 ▶ 農藥殘留、動物用藥殘留、藥物、工業檢測、食品檢測 特殊分析 ▶ 圓二色光譜儀、葉綠素螢光儀、多功能酶標儀 www.aubotech.com # 國巨集團同欣奇力新創未來 全球被動元件領導廠商 ## 國巨股份有限公司 國巨官網 104職缺列表 國巨自成立以來,深耕被動元件產業,近年來公司營運規模持續成長,並完成多項全球性併購,一舉將公司推升為具備全球性產品、技術及銷售等競爭優勢的領先地位,經營版圖涵蓋歐美亞大陸25個國家、47個銷售據點、40個生產基地及20個研發中心,全球員工人數達40,000人。 現聯合**奇力新、同欣電**招募<mark>國際人才(研發工程師、設備工程師和製程工程師…等),被動元件公司尋找主動的你,我們歡迎具備專業與熱情的優秀夥伴加入國巨集團,給自己加入跨國企業和未來職涯發展加值的機會!</mark> #### 重要年表 ○ 1977 國巨成立於1977年 ○ 1993 在台灣證券交易所掛牌上市 ○ 2000 併購飛利浦被動元件事業群 ○ 2018 併購Pulse普思電子、Brightking君耀電子 ○ 2020 併購KEMET基美電子 產品範圍 國巨的一站式購足產品包括晶片電阻、導線電阻、電容(包含積層陶瓷、鉭質及鋁質電容)、天線、網路產品、電感、變壓器、繼電器以及電路保護元件等 全球營運 航太、汽車、5G及電信、工業、醫療、loT、電源管理、綠電能、電腦周邊及消費性電子等 # 材料科技 盡在 S 勝博國際 更多完整儀器規格 及影片介紹, 請連結或搜尋 勝博國際集團中英文官網 Google Q 新物版版 × | & ### 理化儀器 加熱攪拌器/多點攪拌器 精密電子天平 精密二位數/水分量測天平 高精密定溫烘箱 可調式智慧真空烘箱 精密烘箱 德國製超音波洗淨器 箱型高溫爐 新世代管型爐 桌上型高壓滅菌器(釜) 智能型高壓滅菌器(釜) ### 金相製備 精密切割機/熱鑲埋機 研磨抛光機 ## 樣品前處理 多功能離心機 數位型高速攪拌機/均質機 零下86度超低溫冷凍櫃 減壓濃縮系統 多功能凍結乾燥機 噴霧乾燥機 數位型轉黏度計 ### 材料破碎 桌上型/大型顎碎機 高能奈米球磨機 泛用型多功能球磨機 晶片精密研磨抛光 晶片貼合及耗材 ### 分散均質 智慧型超音波奈米分散儀 工業型超音波奈米分散儀 **奈米超高壓均質機** ### 精密分析 高速標準型光譜儀 液相/氣相/總有機碳層析儀 硬度分析儀 粒徑及型態分析儀 搖篩粒徑分析 搖篩篩網配件 元素分析儀 OES分光儀 ### §熱膨脹分析(DIL): - 陶瓷膨脹係數唯一選擇 - 温度範圍: -180 ~2800 °C - 升溫速率: 0.01 -100 °C/min - 水平式、垂直式、光學式、相變儀 ## §同步熱分析(STA): #### ● TG-DSC, TG-DTA, TG-Cp 測量模組 ■ 温度範圍: -150 ~2400 °C● 升溫速率: 0.01 -100 °C/min ● 真空度 : 10E-5 mbar to 150 bar ### 全自動真密度測試儀: 快速、高精度測量各種粉體、塊體等固體材料的真體積及真密度,樣品室體積範圍 1cm3-100cm3,平均完成一次分析約需 3min,測試效率高,非常適合質檢的快速分析。 - 測試氣體氦氣/氦氣測試 - 範圍 0.0001 g/ml-無上限 - 測試精度±0.03% - 重複性±0.02% ### 高性能比表面積及孔徑及微孔分析儀: - 等溫吸脫附曲線/BET 比表面積(單點、多點) - Langmuir 表面積/BJH 孔徑分析/t-plot 分析 - 表面積(STSA) - DR、DA、MP 方法 - HK/SF 孔徑分析; - NLDFT 孔徑分佈; - 平均孔徑、總孔體積; - 吸附曲線、吸附熱計算 #### 本公司配備試驗機,歡迎洽詢並試驗 Email: info@fstintl.com.tw/聯絡人:郭文龍先生/0919-138-108 ## **Content** | Preface | 1 | |--|------------------------------| | Founders of ACTSEA | 3 | | Organization Institutions of ACTSEA2021 | 4 | | Organization Committee Members | 5 | | Acknowledgment | 6 | | ACTSEA 2021 Program Overview | 7 | | Keynote Lectures | 15 | | K_1. Enhanced Luminous Transmittance and Solar Modulation by Su | ıbwavelength VO ₂ | | Nanoparticle Film for Smart Window Applications (Chun-Hway Hsu | ueh)16 | | K_2. Tubular Type Solid Oxide Reversible Cell Using LaGaO₃ Electrolyte | Film Prepared by | | Dip-coating Method (Tatsumi Ishihara) | 18 | | K_3. Novel Reactor Design and Experimental Diagnostics for Redox Flov | w Batteries (Yasser | | Ashraf Gandomi) | 20 | | K_4. High Performance Dielectrics for Passive Integration and Energy Sto | orage (Hong Wang) | | | 22 | | Technical Symposia | 24 | | Invited Speaker | 24 | | A. Alternative energies | 27 | | B. Battery and energy storage | 30 | | E. Energy efficiency technologies and applications | 51 | | F. Fuel cells | 59 | | H. High performance materials under extreme conditions | 70 | | L. LED | 75 | | M. Materials and technologies for a low carbon, sustainable society | 77 | | P. Photovoltaic / Solar power | 82 | | Oral Speaker | 89 | | B. Battery and energy storage | 92 | | E. Energy efficiency technologies and applications | 98 | | F. Fuel Cell | 102 | | L. LED | 104 | | M. Materials and technologies for a low carbon, sustainable society | 106 | | P. Photovoltaic / Solar power | 109 | | Poster Session | 110 | | A. Alternative energies | 118 | | B. Battery and energy storage | 123 | #### ACTSEA 2021 #### Nov. 15 – Nov. 17, 2021, Taipei, Taiwan. | E. Energy efficiency technologies and applications | 137 | |--|-----| | F. Fuel cells | 142 | | H. High performance materials under extreme conditions | 171 | | L. LED | 179 | | M Materials and technologies for a low carbon, sustainable society | 182 | | P. Photovoltaic/Solar power | 198 | | Contact Information | 200 | ## **Preface** Welcome to the Seventh International Symposium on Advanced Ceramics and Technology for Sustainable Energy Applications toward a Low Carbon Society (ACTSEA 2021) held from Nov. 15-17, 2021 at the National Taipei University of Technology, Taipei, Taiwan. Based on the success of the last 6 ACTSEA International Symposium: 1st (Ping Tung, 2007) · 2nd (Taipei, 2009) · 3rd (Ping Tung, 2011) · 4th (Taipei, 2013) · 5th (Tainan, 2015) and 6th (Kaohsiung, 2017) held for every other year since 2007 by Prof. Jow-Lay Huang (National Cheng Kung University, Taiwan), Prof. Kuan-Zong Fung (National Cheng Kung University, Taiwan), Prof. Wei-Hsing Tuan (National Taiwan University, Taiwan), Prof. Hua-Tay Lin (Guangdong University of Technology, China), Prof. Tatsuki Ohji (National Institute of Advanced Industrial Science and Technology, Japan), and Prof. Sanjay Mathur (University of Cologne, Germany). On behalf of the organizing committee of ACTSEA 2021, it is our great honor and pleasure to welcome all of your participation and contribution in this conference. The purpose of this symposium is to provide an international scientific forum for discussion and exchange of ideas on the up-to-date R&D of advanced ceramics for sustainable energy and energy efficiency applications. The experts and scholars from industries, universities, and research laboratories will discuss recent advances, development, field applications, and future challenges for creating ceramics with unusual properties as well as bringing these ceramics to the marketplace. The presentation and discussion will focus on both basic science and technology aspects. Since the aim and vision of ACTSEA Symposium series has been well recognized, ACTSEA 2021 is endorsed by several materials-related societies including the American Ceramic Society (ACerS), European Ceramic Society (ECerS), the Ceramic Society of Japan (CerSJ), the Korean Ceramic Society (KCerS), World Academy of Ceramics (WAC) and Taiwan Ceramic Society (TCerS). Due to an uncertain COVID-19 situation that resulted in a very difficult travel restriction for most countries and researchers, this conference is only offering on-line participation to the event with Virtual Video Presentation. With strong support and contribution from ACTSEA 2021 participants, there are more than 115 attendees from 11 countries. The presentations include 4 keynote speeches, 25 invited talks, 18 oral talks and 71 poster presentations covering the following topics: "Alternative energies", "Battery and energy storage", "Energy efficiency technologies and applications", "Fuel cells", "High performance materials under extreme conditions", "LED", "Materials and technologies for low carbon, sustainable society", "Nuclear", "Photovoltaic/Solar power", and "Thermoelectric". We would like to express our sincere thanks to all of the speakers and attendees who have arranged to join this conference from their extremely busy schedule. We sincerely appreciate the financial supports from the Ministry of Science and Technology of Taiwan, Ministry of Education and National Taipei University of Technology. With their generous support, ACTSEA 2021 will be more successful. We hope you all enjoy the conference and good health. Sincerely, Eric YEH ACTSEA 2021 Conference Chair Enk Yeh President of TCers Vice President of Holy Stone ## **Founders of ACTSEA** Prof. Jow-Lay Huang National Cheng Kung University, Tainan, Taiwan Prof. Kuan-Zong Fung National Cheng Kung University, Tainan, Taiwan Prof. Hua-Tay Lin Guangdong University of Technology, China Prof. Wei-Hsing Tuan National Taiwan University, Taipei, Taiwan Prof. Tatsuki Ohji National Institute of Advanced Insustrial Science and Technology (AIST), Japna Prof. Sanjay Mathur University of Cologne, Germany ## **Organization Institutions of ACTSEA2021** **Eric YEH** - President of Taiwan Ceramic Society - ACTSEA 2021 Conference Chair Sea-Fue WANG - President of NTUT, Taiwan - ACTSEA 2021 Honorary Conference Chair **Wei-Hsing TUAN** - Chair of ACerS-Taiwan Chapter - ACTSEA 2021 Conference Co-Chair ## **Organization Committee Members** #### Organizer Prof. Jow-Lay Huang, National Cheng Kung University, Taiwan Dr. Eric Yeh, Taiwan Ceramic Society Prof. Sea-Fue Wang, National Taipei University of Technology Prof. Wei-Hsing Tuan, National Taiwan University, Taiwan Prof. Hua-Tay Lin, Guangdong University of Technology, China Prof. Tatsuki
Ohji, National Institute of Advanced Industrial Science and Technology (AIST), Japan Prof. Kuan-Zong Fung, National Cheng Kung University Prof. Sanjay Mathur, University of Cologne, Germany Prof. I-Ming Hung, Yuan Ze University #### **Committee member** Prof. Chien-Te Hsieh, Yuan Ze University Prof. Kuen-Song Lin, Yuan Ze University Prof. Chien-Ming Lei, Chinese Culture University Prof. Yen-Yu Chen, Chinese Culture University Prof. Yung-Chin Yang, National Taipei University of Technology Prof. Yu-Chuan Wu, National Taipei University of Technology Prof. Te-Wei Chiu, National Taipei University of Technology Prof. Chuan-Ming Tseng, Ming-Chi University of Technology Prof. Yu-Ching Huang, Ming-Chi University of Technology Prof. Cheng-Ying Chen, Ming-Chi University of Technology Prof. Ying-Chieh Lee, National Pingtung University of Science and Technology Prof. Chien-Chih Chiang, Lunghwa University of Science and Technology Prof. Jeng-Kuei Chang, National Yang Ming Chiao Tung University Dr. Chun-An Lu, Industrial Technology Research Institute Prof. Shu-Yi Tsai, National Cheng Kung University Prof. Chung-Jen Tseng, National Central University Prof. Sheng-Wei Lee, National Central University Prof. Ching-Yuan Su, National Central University Prof. Tai-Nan Lin, Institute of Nuclear Energy Research Prof. Horng-Show Koo, Taipei University of Marine Technology ## **Acknowledgment** #### Organized by: ### **Sponsored by:** ### **Endorsed by** ## **ACTSEA 2021 Program Overview** | Date Time | Nov. 15, 2021
(Mon) | Nov. 16, 2021
(Tue) | Nov. 17, 2021
(Wed) | | |---------------------|------------------------|------------------------|---------------------------|--| | | -Registration | -Registration | -Registration | | | 09:00
~
12:00 | ACTSEA Boulous | -Keynote Speech | -Keynote Speech | | | 12.00 | -ACTSEA Review | -Oral Sessions | -Oral Sessions | | | 12:00 ~ 13:30 | Lunch | | | | | | -Opening | | - Oral Sessions | | | 13:30
~
17:00 | Don't Consider | -Oral Sessions | -Students Award
(Post) | | | 17.00 | -Post Sessions | | - Closing Ceremony | | # **ACTSEA 2021 Program** *Nov. 15 - Nov. 17, 2021 (UTC+8)* | Monday
Nov. 15, 2021 | ➤ 09:00 – 12:00 Registration ➤ 13:30 – 13:40 Opening Ceremony / ACTSEA Review ➤ 13:40 – 17:19 Poster Session | | | | | |--|--|---|-------|---|--| | Post | Room 1; Chairman: Chuan-Ming Tseng | | | | | | | A_P01 | Hairus Abdullah
Impressive OER Performance on Micro-Tree-Like
Ni ₃ S ₂ in Alkaline Solution | B_P11 | Yi-Hung Wang
Effect of concentration on performance of ZrO ₂
nanoparticle electrochemical in Vanadium Redox
Flow Batteries | | | | A_P02 | Chi Yuan Lee
Integration of High Pressure Resistant Flexible 6-in-1
Microsensor and High Pressure Proton Exchange
Membrane Water Electrolyzer | B_P12 | Debabrata Mohanty Synthesis and Properties of Li ₂ MnO ₃ - LiMn _{1/3} Co _{1/3} Ni _{1/3} O ₂ Cathode Materials for Lithium-Ion Battery | | | | A_P03 | Chi Yuan Lee PEMWEs MEA Anode Internal Sensing Technology Development | B_P13 | Jing-Yu Lai
Synthesis and Material Characterisic of
Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Solid Electrolytes for
Lithium-ion Battery | | | | A_P04 | Jui-Teng Lee
Incorporation of Au@CuSCu ₂ S nanoparticles on ZnO
nanosheets for efficient photodark responsive
degradation of organic pollutants | B_P14 | Jing-Yu Lai Synthesis and Properties of double-layered Li2MnO3LiMn1/3Co1/3Ni1/3O2 material for Lithium-Ion Battery | | | | B_P01 | Tai-Feng Hung Polymer-derived Nitrogen-doped Carbon Materials with Hierarchically Porous Architectures toward Capacitive Performances for Lithium-ion Capacitors | E_P01 | Enzhu Lin The effects of selectively and randomly deposited Ag nanoparticles on the piezocatalytic activity of BaTiO ₃ nanocubes/cuboids | | | 13:40 – 17:19
(3min for each post)
post ID order | B_P02 | Dhanapal Vasu Excellent Electrochemical active CuFe ₂ O ₄ 3D-rGO based Supercapacitor Electrodes with an Ultrahigh Specific Capacitance | E_P02 | Tung-Wei Chang
Development of nano-sized Fe-based powder for
Inductance | | | | B_P03 | Arjunan Karthi Keyan High energetic supercapacitor electrode of CuCoO ₂ P-rGO nanocomposite with ultrahigh specific capacitance | E_P03 | Chang-Chun Zheng Preparation of Nitrogen-doped BaTiO ₃ Thin Films on TiNSi by _Plasma Electrolytic Oxidation | | | | B_P04 | Zhen Chong
Performance of Molybdenum-Modified Titanium
Oxide as anode for lithium-ion Battery | E_P04 | Heng-Jyun Lei
Preparation of CeO=CuCrO ₂ composite by
electrospinning method | | | | B_P05 | Chi Yuan Lee
Development of Instant Diagnostic Technology for
Hydrogenvanadium Flow Battery | E_P05 | Bing-Zhen Hsu
Porous Structure ZnO-ZnFe ₂ O ₄ Catalyst Applied
by Hydrogen from Methanol Steam Reforming | | | | B_P06 | Jen Hao Yang
Effect of Synthesis Routes on Nickel rich and Cobalt-
free Layered Oxides Cathode for Li Ion Batteries | F_P01 | Chi Yuan Lee
Flexible Integrated Microsensor for In-situ
Monitoring of Proton Battery | | | | B_P07 | Xiejing Luo Computational simulation and efficient evaluation on corrosion inhibitors for electrochemical etching on aluminum foil | F_P02 | Wei-Cheng Chin
Correlation between NiFe ₂ O ₄ Cathode Thickness
and Hydrogen Production Efficiency for Solid
Oxide Electrolyzer Cells | | | | B_P08 | Jia-Hong Du Polarization Reduction of Surface-Modified Garnet Solid_Electrolytes for Solid State Li-ion Battery Applications | F_P03 | Kuan-Lin Chen
Hydrogen Storage Alloy Tanks for Fuel Cell
Assisted Bicycles | | | | B_P09 | Yu-Hsuan Su
Synthesis and Electrochemical Properties of Single-
Crystal LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode for Lithium-Ion
Batteries | F_P04 | Yen-Yu Chen
Preparation of Porous Zirconia by Ceramic Photo-
polymerization Process | | | | B_P10 | Zih-Heng Hsieh Characterization of spinel cathode material for advanced lithium-ion batteries | F_P05 | Jhih-Yu Tang Effect of Dual Phases on Ionic Conduction of Consisting of Doped Ceria and Carbonates | | | | | Y Y T | | Ayano Iizuka | |---|-------|---|-------|---| | | F_P06 | Yuan-Jie Tsai
A Modified Solid-State Reaction Method to
Synthesize Proton-Conducting BaCe _{0.5} Zr _{0.3} Y _{0.2} O _{3-δ}
Electrolyte with Improved Sinterability | F_P20 | Computer simulation via phase-field method to consider the effect of magnetic field on the formation process of spontaneous superlattice structure using dynamic auroral PLD | | | | Sheng-Wei Lee Nd-doped LSCF nano-fibrous cathode for proton- conducting solid oxide fuel cells | F_P21 | Yi-Chu Han The study of 8YSZ electrolyte fabrication of the tubular solid oxide fuel cells by the dip-coating method | | | F_P08 | Chia-Chieh Shen
Small Fuel Cell Powered Vehicle | F_P22 | Yi-Le Liao
The Research of the Mechanism of in-situ
Sintering Solid Oxide Fuel Cell | | | F_P09 | Liangdong Fan Intermediate temperature solid oxide fuel cell with nanoscale electrodes fabricated by one-step sintering technology | H_P01 | Yi Hsiang Lai Processing and performance of oxidation-resistant layers on graphite | | | | Liangdong Fan Enhancement of Oxygen Reduction Reaction activity of Cobalt Based Cathode in Solid Oxide Fuel Cell | H_P02 | Chien-Chih Chiang Influence of Unipolar Pulsed Two-Stage Rise Voltage on Wear Resistance of Carbon Steel Surface Using MAO method | | | | Azam Khan Preparation and Characterization of YxBa _{2-x} Co ₂ O ₅ + δ Cathode Material for Solid Oxide Fuel Cell | H_P03 | Kai-Yo Huang Analysis of the microstructure and dielectric properties on CaCu ₃ Ti ₄ O ₁₂ -based dielectric ceramic materials | | 13:40 – 17:19
(3min for
each post)
post ID order | F_P12 | Ko-Yun Chao Preparation and Properties of Y _x Sr _{1-x} yTiO _{3-δ} anode for Solid Oxide Fuel Cells | H_P04 | Ming-Zhe Lu High temperature stability BaTiO ₃ -Bi _{0.5} Na _{0.5} TiO ₃ - based dielectric ceramics of formulation improvement and material properties analysis | | | F_P13 | Ko-Yun Chao Preparation and Characterization of High Temperature Mixed Proton-electron Conductors | H_P05 | Gourav Mundhra Use of a composition-graded solid electrolyte for determination of Gibbs energy of formation of lanthanum hafnate A prospective TBC material for turbine applications | | | | Takeshi Kawai Spontaneous formation of superlattice thin film with perovskite A ³⁺ B ³⁺ O ₃ structure using dynamic aurora PLD and its effect on physical properties | H_P06 | Tsung-Yang Ho
High Performance Solid State SO ₂ sensor using
Nano-structured Oxides | | | | Haruki Zayasu Preparation and characterization of epitaxially grown YSZ thin films on porous silicon substrates for SOFC applications | H_P07 | Chien-Chih Chiang Effects of MAO Coating on the Hardness and Corrosion Resistance of 6032 Aluminium Alloy | | | F_P16 | Kaoru Ogata Spontaneous formation of superlattice thin films on substrates having heterogenious structure using dynamic aurora
PLD | H_P08 | Bo-Cheng Lai Dielectric properties of CaO–B ₂ O ₃ –SiO ₂ glass- ceramics in the millimeter-wave range of 20–60 GHz frequency | | | г_Р1/ | Kazuto Yoshida Low temperature synthesis of PZT thin films with giant piezoelectric displacement on glass substrate by domain engineering from molecular-designed | L_P01 | Mu-Tsun Tsai Luminescence Investigation of Chromium-doped Forsterite Phosphor Thin Films | | | F_P18 | Ryoya Nishimura The effect of starting materials on low-temperature preparation of Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ single crystal using the flux method | L_P02 | Mu-Tsun Tsai Luminescence Investigation of Blue-emitting Cordierite Phosphor Thin Films | | | F_P19 | Seiji Sogen Synthesis of PZT thin film with single crystal-like ferroelectricity on SUS substrate | L_P03 | Chien-Chih Chiang
Structures and Photoluminescence Properties of
(Ba/Sr) _{1-x} MgAl ₁₀ O ₁₇ Eux ₂ /Phosphors | | | | | | T | |---------------------------------------|-------|--|-------|---| | | M_P01 | Chung-Lun Yu
ZnO-ZnCr ₂ O ₄ Catalyst Fabricated by Glycine Nitrate
Process and Used for Hydrogen Generation with the
Steam Reforming of Methanol | P_P01 | Chien-Chih Chiang Synthesis and Characteristic of III-VI Metal Chalcogenide semiconductor nanoparticle | | | M_P02 | Zhen-Yu Sun CuCrO ₂ -TiO ₂ Nanocomposites Prepared by Glycine Nitrate Process and Photodegradation the Organic Dye with Ultraviolet Light | P_P02 | Gu-Yan Liao
Characteristics of La ³⁺ dopants in CeO ₂ thin
films for resistance random access memory
application | | | M_P03 | Yung-Fu Wu
Nickel Recovery from Spent Plating Solution by
Chemical Precipitation | | | | | M_P04 | Yung-Fu Wu
Anticorrosion for 304 Stainless Steel by Using
TiO ₂ Ag ₂ O Protection Layer | | | | | M_P05 | Chin-Wei Hung Fabrication of CuYO ₂ Nanofibers by Electrospinning | | | | | M_P06 | Yu-Feng You Preparation of Janus Structure ZnOCuO Composite Oxide Particle | | | | | M_P07 | Shu-Yi Tsai Effect of adding mesoporous silica KIT-6 of V ₂ O ₅ WO ₃ TiO ₂ catalyst for selective catalytic reduction | | | | 13:40 – 17:19
(3min for each post) | M_P08 | Qiaofeng Han Synthesis of Bi ₄ O ₅ I ₂ BiOI heterojunction with improved visible-light photocatalytic activity | | | | post ID order | M_P09 | Min Ao The effect of La ₂ O ₃ addition on intermetallic-free aluminium matrix composites reinforced with TiC and Al ₂ O ₃ ceramic particles | | | | | M_P10 | Ying-Chieh Lee
A Study of Low-Temperature Sintering of Al ₂ O ₃
Ceramics with TiO ₂ and Nb ₂ O ₅ addition | | | | | M_P11 | Li-En Chen Electrostatic separation for recycling silicon from the crushed photovoltaic modules | | | | | M_P12 | Zihan Kang Novel Bi ₂ WO ₆ /g-C ₃ N ₄ /ZnO Z-scheme heterojunctions with g-C ₃ N ₄ interlayer modulated by piezoelectric polarization for efficient piezo-photocatalytic decomposition of harmful organic pollutants | | | | | M_P13 | Mi Chen
Characerization of Graphene/CNTs Hybrid
Conductive Film by Screen Printing | | | | | M_P14 | Wan-Chien Wu
Developments of Calcium Sulfate Coating on Ti ₆ Al ₄ V
Substrate by Flame Spray | | | | | M_P15 | Ti Hsin High entropy piezo-catalyst oxide for dye-degradation | | | | Tuesday
Nov. 16, 2021 | > | | tration
erence Sess | ions | |--------------------------|---|---|------------------------|--| | , | | Room 1 | | Room 2 | | | | Session Chair: Kuan-Zong Fung | | | | 09:30 – 10:10 | Keynote
Session
I | K_1 Chun-Hway Hsueh Enhanced Luminous Transmittance and Solar Modulation by Subwavelength VO ₂ Nanoparticle Film for Smart Window Applications | | | | 10:10 – 10:50 | Keynote
Session
II | K_3 Yasser Ashraf Gandomi Novel Reactor Design and Experimental Diagnostics for Redox Flow Batteries | | | | 10:50 – 11:10 | | Coffee B | reak | | | | ; | Session Chair: Chien-Ming Lei | S | Session Chair: Yen-Yu Chen | | 11:10 – 11:30 | Invited
Speaker | H_I01 Kungen Teii Plasma Deposition of High-Quality Cubic Boron Nitride Films for Applications to Ultrahard Coatings and Electronic Devices | Invited
Speaker | F_I01 Naoki Wakiya
In-situ observation of spontaneous phase
separation via spinodal decomposition in Sr-
excess SrTiO ₃ thin film | | 11:30 – 11:50 | Invited
Speaker | P_I01 Ngoc Duy Pham Novel P-dopant for Spiro-OMeTAD-based Hole- Transporting Materials towards Efficient and Stable Perovskite Solar Cells | Invited
Speaker | B_I04 Van-Duong Dao Environmental energy harvesting based on nanogenerator | | 11:50 – 12:10 | Invited Speaker P_I02 Al Jumlat Ahmed Thermoelectric Performance of Nano-engineered Perovskite Oxide Materials Sr _{1-x} La _x TiO ₃ and Ba _{1-x} La _x TiO ₃ | | Invited
Speaker | F_I03 Yen-Yu Chen Microstructures and Electrical Properties of BaCeZrYYbO ₃₋₈ YSZ composites prepared by Solid-State Sintering for Sustainable Energy Application | | 12:10 – 13:10 | Lunch Break | | | | | | | ession Chair: Horng Show Koo | | Session Chair: Shu-Yi Tsai | | 13:10 – 13:30 | Invited
Speaker | P_I03 Hong-Xia Wang Towards Cost-Effective, Stable and Greener Perovskite based Solar Cells and Light Emitting Diode | Invited
Speaker | F_I04 Francesco Ciucci High Performance Protonic Ceramic Fuel Cells | | 13:30 – 13:50 | Invited
Speaker | E_I01 Horng-Show Koo
Recent Progress on Gallium Oxide Ceramic
Materials and Thin Films for High-efficiency and
Energy-saving Applications | | F_O01 Azam Khan Study of BaCO ₃ and Samarium-doped Ceria Carbonate Composite Electrolyte for Low- Temperature Solid Oxide Fuel Cells | | 13:50 – 14:10 | Invited
Speaker | A_I01 Subramanian Sakthinathan Efficient Electrocatalyst for Hydrogen Evolution Reaction based on_Delafossite Materials supported Carbon composite | Invited | B_I01 Nghia Van Nguyen
Carbon coated Sodium Manganese oxide as
a cathode material for Sodium-Ion battery | | 14:10 – 14:30 | Invited
Speaker | M_I01 Shan-Tao Zhang Ferroelectric and pyroelectric property in antiferroelectric-based composites | Invited
Speaker | B_I02 Manas Ranjan Panda Probing the Li/Na/Storage Mechanism of 2D Transition Metal Dichalcogenides Using Synchrotron-Based X-ray Techniques | | 14:30 – 14:50 | Invited
Speaker | M_I02 Nobuhiro Matsushita "Spin-Spray Method" A Novel Solution Process for Preparing Semiconductor Oxide Films with Low Environmental Load | Invited
Speaker | B_I03 Debasmita Dwibedi Insights into Stabilization of α-Na ₂ Fe(SO ₄) ₂ and _Structure/ Polymorphism/ and Electrochemistry Thereof | | 14:50 – 15:10 | | Coffee Break | | | | |---------------|--|--|--------------------|--|--| | | Se | ssion Chair: Alex Chinghuan Lee | Š | Session Chair: Tai-Nan Lin | | | 15:10 – 15:30 | Oral | M_O01 Chia-Wei Huang
Chemical Looping Gasification of Spent
Coffee Ground Using Iron ore as Oxygen
Carrier | Invited
Speaker | F_I02 Kuan-Ting Wu The Role of Self-exsolved Heterogeneous Composite Nanoparticles towards Highly Active Fuel Electrode for CO ₂ H ₂ O Co-electrolysis | | | 15:30 – 15:50 | Oral | Oral M_O02 Asit Kumar Panda A Non-Enzymatic/Biocompatible Electrochemical Sensor based on N-doped Graphene Quantum Dotincorporated SnS ₂ Nanosheets for In Situ Monitoring of Hydrogen Peroxide in Breast Cancer Cells | | B_I05 Tungabidya Moharana
Development of Paper-Based Flexible
Supercapacitor Fabricated Using
Polypyrrole | | | 15:50 – 16:10 | Oral M_O03 Lien-Hui Kan Investigation on Luminescent Layer of Alkaline- earth Aluminates on Aluminum Alloy | | Invited
Speaker | B_I06 Prabeer Barpanda
Perovskite Lead-based anodes for
secondary batteries | | | 16:10 – 16:30 | Invited
Speaker | r tamepers as sinear naturalism na v ensuane | | B_I07 Tran V. Thu
Graphene-MnFe ₂ O ₄ -polypyrrole ternary
hybrids with synergistic effect for
supercapacitor electrode | | | 16:30 – 16:50 | Oral | L_O01 Pei-Tzu Cheng
Optical Properties of Europium doped Calcium
Sulfide Prepared by Carbon | Invited
Speaker | H_I02 Masahiro YOSHIMURA
Continuous(Successive) Fabrication of Nano-
Structured Ceramic Materials via Soft,
Solution Processing without Firing | | | Wednesday Nov. 17, 2021 | A | | istration
aference Ses | ssions | |-------------------------|--|--
---------------------------|---| | | | Room 1 | | Room 2 | | | | Session Chair: I-Ming Hung | | | | 09:30 – 10:10 | Keynote
Session I | K_2 Tatsumi Ishihara
Tubular Type Solid Oxide Reversible Cell Using
LaGaO ₃ Electrolyte Film Prepared by Dip-
coating Method | | | | 10:10 – 10:50 | Keynote
Session
II | K_4 Hong Wang High Performance Dielectrics for Passive integration and Energy Storage | | | | 10:50 – 11:10 | | Coffee | Break | | | | S | Session Chair: I-Ming Hung | S | Session Chair: Yen-Yu Chen | | 11:10 – 11:30 | Invited
Speaker | i light-capacity layered oxide camode | | E_I03 Meng-Fang Lin Nanofiber for triboelectric nanogenerator | | 11:30 – 11:50 | Oral B_O01 Debabrata Mohanty Effect of different LiTFSI content on Composite Solid Electrolyte with NASICON-type LATP and PVDF-HFP for Solid-State Lithium-ion | | Oral | E_O03 Feng Sheng Chao
Supercapacitive Properties of Bi-doped
ZnCo ₂ O ₄ Nanostructure Synthesized by In-situ
Hydrothermal Method | | 11:50 – 12:10 | Oral P_O01 Chia-Yu Chang Development of Visible Light Responsive TiO2 Photoelectrodes by Metal Nanoparticle Loading | | | | | 12:10 – 13:10 | | Lunch | Break | | | | S | Session Chair: Te-Wei Chiu | Session | Chair: Subramanian Sakthinathan | | 13:10 – 13:30 | Oral | B_O03 Bruce Chen Roles of Binders on Self-Discharge for Porous Carbon Supercapacitor Electrodes | Invited | B_I08 P. Muhammed Shafi
Three Dimensional NiO Nanonetwork Electrode
for Efficient Ultra-fast Electrochemical Energy
Storage Application | | 13:30 – 13:50 | Oral B_O04 Chinghuan Lee Structure evolution and operando analysis methods of fast-charging lithium titanate materials developed in HiGEM research center | | Oral | B_O06 Ngoc Thanh Thuy Tran Insight into the degradation mechanism of the Ni-rich NMC cathode materials | | 13:50 – 14:10 | Oral | B_O05 Yu-Si Chen Fe-Cu-Schiff base complexes as Electrocatalysts for Zn-Air Batteries | Oral | F_O02 Liangdong Fan High-performance in-situ Ni nanoparticle exsolved LSTN/LNSDC composites for low- temperature solid oxide fuel cells | | 14:10 – 14:30 | Oral | E_O01 Chih-Heng Lee A DFT Study of the Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo ₂ O ₄ | Oral | E_O02 Pao-Wen Shao
Flexo-phototronic Effect in Centro-
symmetric BiVO ₄ Epitaxial Films | | 14:30 – 14:50 | Oral | B_O02 Rahmandhika Firdauzha
Hary Hernandha
SiOxCarbon Multilayer Coating on Silicon
Nanoparticles Synthesized via Supercritical CO ₂ | | | | 14:40 – 15:00 | | Coffee Break | | | |---------------|--------------------|--|--|--| | | | Session Chair: Hwai-En Lin | | | | 15:00 – 15:20 | Invited
Speaker | E_I02 Alice EH Lee Sie
Robust tristate reversible electrochemical
mirror electrochromic devices | | | | 15:20 – 15:40 | | L_O02 Henni Setia Ningsih Synthesis and characterization of Tb-doped Y ₄ SiAlO ₈ N powder by spray pyrolysis | | | | 15:40 – 16:00 | | E_O04 Deng-Li Ko
High-stability transparent flexible energy
storage based on PbZrO ₃ / muscovite
heterostructure | | | | 16:00 – 16:20 | | -Students Award (Post) -Closing Ceremony | | | ## **Keynote Lectures** | Paper ID | Corresponding
Author | All Authors | Title | Institution | Department | |----------|--------------------------|--|---|---|--| | K_1 | Chun-Hway
Hsueh | Ying-Chou Lu,
Chun-Hway
Hsueh | Enhanced Luminous Transmittance and Solar Modulation by Subwavelength VO ₂ Nanoparticle Film for Smart Window Applications | National
Taiwan
University | Department
of Materials
Science and
Engineering | | K_2 | Tatsumi Ishihara | Tatsumi
Ishihara and
Tan Zhe | Tubular Type Solid Oxide
Reversible Cell Using LaGaO ₃
Electrolyte Film Prepared by
Dip-coating Method | Kyushu
University | Department
of Applied
Chemistry | | K_3 | Yasser Ashraf
Gandomi | Yasser Ashraf
Gandomi,
Matthew M.
Mench | Novel Reactor Design and
Experimental Diagnostics for
Redox Flow Batteries | Massachusetts
Institute of
Technology | Chemical
Engineering | | K_4 | Hong Wang | Hong Wang | High Performance Dielectrics
for Passive Integration and
Energy Storage | Southern University of Science and Technology | College of
Science | K_1. Enhanced Luminous Transmittance and Solar Modulation by Subwavelength VO₂ Nanoparticle Film for Smart Window Applications (Chun-Hway Hsueh) ## **Prof. Chun-Hway Hsueh** #### Affiliation: Department of Materials Science and Engineering, National Taiwan University **Position:** Distinguished Professor Email: hsuehc@ntu.edu.tw | | T | |----------------------|--| | Education | PhD, Department of Materials Science and Engineering, University of California, Berkeley, USA MS, Department of Materials Science and Engineering, National Tsing Hua University, Taiwan BS, Department of Physics, National Taiwan University, Taiwan | | Experience | Distinguish Professor, Department of Materials Science and Engineering, National Taiwan University (2010–present) Visiting Research Professor, Department of Physics, University of Tennessee, Knoxville (2008–2013) Visiting Professor, Department of Materials Science and Engineering, National Taiwan University (2008–2010) Distinguished R&D Staff, Oak Ridge National Laboratory (1986–2010) Research Engineer, Department of Materials Science and Engineering, University of California, Berkeley (1982–1986) | | Honors and
Awards | The World's Top 2% Scientists (list published by Stanford University) Fellow of Materials Research Society, Taiwan (MRS-T) Academician of Asia Pacific Academy of Materials (APAM) Ceramic Medal, Taiwan Ceramic Society 2017 Breakthrough of Future Technology Award, Ministry of Science and Technology (MOST), Taiwan Fellow of American Society for Metals (ASM) International Fellow of the American Ceramic Society (ACerS) Fellow of the World Innovation Foundation (WIF) ISI Highly Cited Researcher in Materials Science The Ross Coffin Purdy (Best Paper) Award, The American Ceramic Society (ACerS) | K 1 ## Enhanced Luminous Transmittance and Solar Modulation by Subwavelength VO₂ Nanoparticle Film for Smart Window Applications Ying-Chou Lu, Chun-Hway Hsueh* Department of Materials Science and Engineering, National Taiwan University, Taiwan *Corresponding Author: hsuehc@ntu.edu.tw #### **Abstract** The VO₂ nanoparticle (NP) films were prepared by self-template syntheses, including sputtering of V films and post-annealing. Compared to the VO₂ thin film with a refractive index of ~2.8 at 550 nm wavelength, the subwavelength VO₂ NP films with the lower effective refractive index (less than 2) exhibited the higher luminous transmittance (T_{lum}) due to the decreased reflectance differences at the air/VO₂ and VO₂/glass interfaces. Also, the subwavelength rutile VO₂ NPs provided the localized surface plasmon resonance excited at ~1250 nm wavelength to enhance the solar modulation (ΔT_{sol}). Using finite-difference time-domain simulations, the optimal NP size and porosity of NP film were designed to obtain the optimum balance between ΔT_{sol} and T_{lum} and the results were confirmed by experimental measurements. The single-sided VO₂ NP film with an ultrahigh T_{lum} of 93.3% exhibited a transparent vision with ΔT_{sol} of 6.1%, and the double-sided VO₂ NP film provided an improved ΔT_{sol} of 14% while T_{lum} was kept at ~70%. With the increasing layer number of VO₂ NP films, excellent ΔT_{sol} of 19% could be achieved for quadra-layered VO_2 NP film while T_{lum} remained at 69.5%. The outstanding performances of the VO₂ NP films exceeded the reported results for porous films, multilayer and nanostructures. Thus, we believe that the VO₂ NP film is a promising nanostructure to lead VO₂-based coatings to a new method for smart window applications, including the building glazing and windshield of vehicle. **Keywords:** Vanadium dioxide, Nanoparticle, Luminous transmittance, Solar modulation, Localized surface plasmon resonance, Finite-difference time-domain simulation ## K_2. Tubular Type Solid Oxide Reversible Cell Using LaGaO₃ Electrolyte Film Prepared by Dip-coating Method (Tatsumi Ishihara) ### **Prof. Tatsumi Ishihara** #### Affiliation: International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University **Position**: Professor Email: ishihara@cstf.kyushu-u.ac.jp | Education | 1984 Kyushu University B.Sc (Department of Applied Chemistry) 1986 Kyushu University
M.Sc. (Department of Materials Science and Technology) 1992 Dr. of Engineering (Kyushu University) | | | | | |----------------------|--|--|--|--|--| | Experience | 1986 Research Associate, Kyushu University 1989-2003 Research Associate, Lecture, Associate Professor, Oita University 2003 Professor, Kyushu University 2012 Associate Director, International Institute for Carbon Neutral Energy, Kyushu University 2012 Distinguished Professor, Kyushu University | | | | | | Honors and
Awards | 2012 Somiya Award from IUMRS 2013 Catalyst Society of Japan Award (Industrial) Academic Award from Ceramic Society of Japan 2016 Daiwa Adrian Prize 2020 Catalyst Socierty of Japan Award (Academic) | | | | | K 2 ## Tubular Type Solid Oxide Reversible Cell Using LaGaO₃ Electrolyte Film Prepared by Dip-coating Method Tatsumi Ishihara^{1*}, Tan Zhe¹ ^{1*} Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Japan ² International Institute of Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Japan *Corresponding Author:ishihara@cstf.kyushu-u.ac.jp #### **Abstract** Reversible operation of Solid Oxide Fuel Cells is now important subject from energy storage of renewable electric power such as solar or wind power [1]. At present, planer type cell design is widely studied for this purpose, however, because of tight gas sealing, tubular type cell design is more desirable from gas sealing. In this study, micro tubular solid oxide cell using $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ (LSGM) thin electrolyte film was prepared by dip-coating and co-sintering process on NiO-YSZ substrate [2,3]. NiO-YSZ porous substrate with 10 mm diameter and 30 mm length was used for preparation of the cell. For preventing reaction between LSGM and NiO, TiO_2 -Ce_{0.6}La_{0.4}O₂/Ce_{0.6}Mn_{0.3}Fe_{0.1}O₂ was used for buffer layer. Ni-Fe layer was also deposited on the surface of NiO-YSZ substrate. It was found that the infiltration of Ce(NO₃)₃ solution into NiO-YSZ substrate was effective for increasing the maximum power density, because both IR loss and overpotential were significantly decreased. The maximum power density of the cell was 0.95 and 0.42 W cm⁻² at 873 and 773 K, respectively at 3 M Ce nitrate infiltrated. The long-term stability of the cell was also measured by using the cell infiltrated with 1.5 M Ce, the stable power generation performance was demonstrated up to 100 h. The steam electrolysis performance of the cell using Ce infiltration was further studied and it was found that Ce infiltrated was also effective to higher current density in SOEC operation and 1.07 A cm⁻² at 1.6 V was achieved at 873 K using 2 M Ce(NO₃)₃ infiltration. In order to further increase in power density and redox stability, effect of co-infiltration with Ce is further studied and co-infiltration of Ni with Ce is further effective for increasing initial performance of the cell, in particular, lower temperature around 773 K and cycle stability of SORC over 100 cycles. Therefore, in this presentation, infiltration effects on NiO-YSZ fuel electrode substrate will be introduced. **Keywords:** Tubular type SOFC, LSGM electrolyte film, Ce infiltration, reversible operation. #### References - [1] S. Yesid, and G. D. Hotza, Renewable and Sustainable Energy Reviews, 61 (2016) 155-174 - [2] Z. Tan and T. Ishihara, J. Electrochem. Soc. 164 (2017) F1690- F1696 - [3] Z. Tan, J.T. Song, A. Takagaki and T. Ishihara, J. Mater. Chem. A, 9 (2021) 1530-1540 ## K_3. Novel Reactor Design and Experimental Diagnostics for Redox Flow Batteries (Yasser Ashraf Gandomi) ## Dr. Yasser Ashraf Gandomi Affiliation: Massachusetts Institute of Technology (MIT) **Position**: Postdoctoral Associate Email: ygandomi@mit.edu | Education | Post-Doctoral Fellowship in Chemical Engineering, Massachusetts Institute of Technology (MIT) Doctor of Philosophy (PhD) in Mechanical Engineering, University of Tennessee Master of Science in Mechanical Engineering, University of Tennessee | |----------------------|--| | Experience | Flow batteries Fuel cells Li-ion batteries Membranes Capacitive deionization | | Honors and
Awards | The Industrial Electrochemistry and Electrochemical Engineering Student Achievement Award; The Electrochemical Society (ECS); Seattle, Washington, USA (2018). The Extraordinary Professional Promise Honor; The University of Tennessee; Knoxville, Tennessee, USA (2017). Best Presentation Award in the "Secondary Batteries and Environmental Materials" Division; The Fifth International Education Forum on Environmental and Energy Science; San Diego, California, USA (2016). | #### **Novel Reactor Design and Experimental Diagnostics for Redox Flow Batteries** Yasser Ashraf Gandomi^{1*}, Matthew M. Mench ² ^{1*} Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), USA, ² Department of Mechanical Engineering, University of Tennessee, USA *Corresponding Author: ygandomi@mit.edu #### **Abstract** Redox flow batteries (RFBs) are scalable energy storage devices that can be integrated with renewable energy sources (e.g., wind and solar energy) to enhance the reliability of renewables-based electricity systems [1]. Despite being very promising, further improvements in the performance and durability of RFBs is needed for widespread adoption of this technology. One of the major issues yet to be addressed for RFBs is relatively fast capacity decline because of electroactive species crossover through the membrane throughout charge/discharge cycling [2]. In this talk, we will discuss advanced experimental diagnostics to assess the sources of lost efficiency and performance limitations in RFBs. Also, we will elaborate on novel reactor architecture design for enhanced localized performance and reduced crossover for redox flow batteries. These enhanced features can be tailored to reduce the self-discharge through the separator while maintaining higher capacity utilization during extended cycling. **Keywords:** Energy storage, Redox flow batteries, Experimental diagnostics, Crossover, Membranes. #### References - [1] Y. Ashraf Gandomi, D. S. Aaron, J. R. Houser, M. C. Daugherty, J. T. Clement, A. M. Pezeshki, T. Y. Ertugrul, D. P. Moseley, M. M. Mench, *Journal of The Electrochemical Society,* 165 (5), A970-A1010 (2018). - [2] Y. Ashraf Gandomi, D. S. Aaron, Z. B. Nolan, A. Ahmadi, M. M. Mench, *Membranes*, 10 (6), 126 (2020). ### K_4. High Performance Dielectrics for Passive Integration and Energy Storage (Hong Wang) ## **Prof. Hong Wang** Affiliation: Southern University of Science and Technology **Position:** Chair Professor Email: wangh6@sustech.edu.cn | | 1995-1998 Ph.D., Xi'an Jiaotong University 1992-1995 M. Sc., Xi'an Jiaotong University | |------------|--| | Education | | | | ● 1986-1990 B.Sc., Xi'an Jiaotong University | | | 2017-Present Chair Professor, Southern University of Science and
Technology | | Experience | 1995–2017 Assistant Professor(1995-1998), Associate
Professor(1998-2002), Professor(2002-07), Xi'an Jiaotong University, | | | • IEEE Fellow (2020) | | Honors and | Chang Jiang Scholar Chair Professor, The Ministry of Education of China
(2011) | | Awards | Distinguished Young Scholar, National Science Foundation of China
(2010) | | | | K 4 #### High Performance Dielectrics for Passive Integration and Energy Storage #### Hong Wang^{1*} ^{1*} Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China *Corresponding Author: wangh6@sustech.edu.cn #### **Abstract** With the development of electronic and information system towards miniaturization and high density integration, especially the speedy applications of wireless network and internet of things, it is required that the electronic materials and components should have the matching properties such as high performance, multifunctional, high frequency enabling and low energy consumption. The highlights of recent advances on the novel LTCC dielectric ceramics for passive integration, dielectric nanocomposites for electronic packaging and energy storage applications will be presented, while the remaining challenges and the promising opportunities of the development will be discussed as well. Keywords: Dielectric, Passive integration, Energy storage, Composite #### References - [1] Y. Wang, et.al., Adv. Mater., 27, 6658 (2015). - [2] Z. Sun, et.al., Adv. Mater., 29, 1604427 (2017). - [3] X. Yuan, et.al., J. Am. Ceram. Soc., 102, 4014 (2019). - [4] J. Hao, et.al., J. Am. Ceram. Soc., 103, 249 (2020). - [5] Q. Yuan, et.al., Adv. Funct. Mater., 30, 2000191
(2020). - [6] B. Yao, et.al., Adv. Mater., 32, 1907499 (2020). - [7] J. Dong, et.al., Adv. Funct. Mater., 2102644 (2021). - [8] X. Xu, et.al., Chem. Eng. J., 397, 125447 (2021). ## **Technical Symposia** ## **Invited Speaker** | Paper ID | Corresponding
Author | All Authors | Title | Institution | Department | |----------|---|--|---|--|---| | A_I01 | Subramanian
Sakthinathan、Te-
Wei Chiu | Subramanian
Sakthinathan,
Karthi keyan
Arjunan,
Dhanapal Vasu,
Te-Wei Chiu | Efficient Electrocatalyst for
Hydrogen Evolution Reaction
based on Delafossite Materials
supported Carbon composite | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | | B_I01 | Van-Nghia Nguyen | Van-Nghia
Nguyen, Van-
Nguyen To,
Van-Ky Nguyen,
Quy-Quyen
Ngo, Trung-Son
Luong, Manh-
Thao Pham,
Manh-Ha
Hoang, Thi-Thu-
Hoa Nguyen | Carbon coated sodium manganese oxide as a cathode material for sodium-ion battery | Hanoi
Architectural
University | Open training
Institute | | B_I02 | Manas Ranjan
Panda | Manas Ranjan
Panda,
Qiaoliang Bao,
Mainak
Majumder, and
Sagar Mitra | Probing the Li/Na Storage
Mechanism of 2D Transition
Metal Dichalcogenides Using
Synchrotron-Based X-ray
Techniques | Monash
University | Department of
Chemical
Engineering | | B_103 | Debasmita Dwibedi | Debasmita
Dwibedi, Shini-
ichi Nishimura,
Prabeer
Barpanda,
Atsuo Yamada | Insights into Stabilization of α -Na ₂ Fe(SO ₄) ₂ and Structure/Polymorphism/ and Electrochemistry Thereof | Tokyo
University | Department of Chemical System Engineering, School of Engineering | | B_I04 | Van-Duong Dao | Van-Duong Dao | Environmental energy harvesting based on nanogenerator | Phenikaa
University | Faculty of
Biotechnology,
Chemistry and
Environmental
Engineering | | B_I05 | Tungabidya
Maharana | Rama Devi,
Kavita Tapadia,
Alekha Kumar
Sutar,
Tungabidya
Maharana | Development of Paper-Based
Flexible Supercapacitor
Fabricated Using Polypyrrole | National
Institute of
Technology,
Raipur, India | Department of
Chemistry | | B_I06 | Prabeer Barpanda | Anshuman
Chaupatnaik,
Prabeer | Perovskite lead-based anodes for secondary batteries | Indian Institute
of Science
(IISc), India | Materials
Research
Centre, Faraday | | | | | T | Т | | |-------|---|--|---|---|--| | | | Barpanda | | | Materials
Laboratory
(FaMaL) | | B_I07 | Tran V. Thu | Tran V. Thu, To
V. Nguyen, Le X.
Duong, Le T.
Son, Vu V. Thuy | Graphene-MnFe ₂ O ₄ -polypyrrole
ternary hybrids with synergistic
effect for supercapacitor
electrode | Le Quy Don
Technical
University | Department of
Chemical
Engineering | | B_108 | P Muhammed
Shafi, A Chandra
Bose, Jae-Jin. Shim | Nikhitha
Joseph, P
Muhammed
Shafi, J. S.
Sethulakshmi,
Raj Karthik, A
Chandra Bose
and Jae-Jin.
Shim | Three Dimensional NiO
Nanonetwork Electrode for
Efficient Ultra-fast
Electrochemical Energy Storage
Application | University | School of
Chemical
Engineering | | B_I09 | Prasant Kumar
Nayak | Prasant Kumar
Nayak | High-capacity layered oxide cathode materials for rechargeable Li-ion batteries | SRM Institute
of Sceince and
Technology,
India | Department of
Chemistry | | E_I01 | Horng-Show Koo | Horng-Show
Koo and Mi
Chen | Recent Progress on Gallium
Oxide Ceramic Materials and
Thin Films for High-efficiency and
Energy-saving Applications | University of | College of Innovative Design and Department of Visual Communication Design | | E_I02 | Alice EH Lee Sie | Alice EH Lee Sie | Robust tristate reversible electrochemical mirror electrochromic devices | Technological
University | School of
Materials
Science and
Engineering | | E_I03 | Meng-Fang Lin | Meng-Fang Lin | Nanofiber for triboelectric nanogenerator | Ming Chi
University of
Technology | | | F_I01 | Naoki Wakiya | Naoki Wakiya,
Mayu Yoshida,
Takahiko
Kawaguchi,
Naoniri
Sakamoto,
Kazuo
Shinozaki,
Hisao Suzuki | In-situ observation of spontaneous phase separation via spinodal decomposition in Srexcess SrTiO₃ thin film | | Department of
Electronics and
Material
Science | | F_102 | Kuan-Ting Wu | Kuan-Ting Wu,
Tatsumi
Ishihara | The Role of Self-exsolved
Heterogeneous Composite
Nanoparticles towards Highly
Active Fuel Electrode for CO ₂ H ₂ O
Co-electrolysis | Kyushu | Department of
Applied
Chemistry | | F_103 | Yen-Yu Chen | Yen-Yu Chen,
Pin-Lun Huang,
Chia-Yu Liu, An-
Chang Lin,
Hsuan-Yun Lin,
Chien-Ming Lei | Microstructures and Electrical Properties of BaCeZrYYbO _{3-δ} YSZ composites prepared by Solid-State Sintering for Sustainable Energy Application | Chinese Culture | Chemical and
Materials
Engineering | | F_104 | Francesco Ciucci | Francesco
Ciucci | High Performance Protonic
Ceramic Fuel Cells | The Hong Kong
University of
Science and
Technology | Department of
Mechanical and
Aerospace
Engineering | |-------|------------------------|--|--|---|---| | H_I01 | Kungen Teii | Kungen Teii,
Jason H. C.
Yang, Seiichiro
Matsumoto | Plasma Deposition of High-
Quality Cubic Boron Nitride Films
for Applications to Ultrahard
Coatings and Electronic Devices | Kyushu
University | Department of
Advanced
Energy Science
and
Engineering | | H_I02 | Masahiro
YOSHIMURA | Masahiro
YOSHIMURA | Continuous(Successive) Fabrication of Nano-Structured Ceramic Materials via Soft, Solution Processing without Firing | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | L_I01 | Sakthivel Gandhi | Abinaya
Mayavan,
Sakthivel
Gandhi | Nanoporous Silica Materials: A
Versatile Supporting Material for
the Development of 'Phosphor in
Glass' | SASTRA
University | School of
Chemical and
Biotechnology | | M_I01 | Shan-Tao Zhang | Shan-Tao Zhang | Ferroelectric and pyroelectric property in antiferroelectric-based composites | Nanjing
University | College of
Engineering
and Applied
Sciences | | M_I02 | Nobuhiro
Matsushita | Ryosuke Nitta,
Yuta Kubota,
Lin Hwai En,
Masahiro
Yoshimura,
Nobuhiro
Matsushita | "Spin-Spray Method" A Novel
Solution Process for Preparing
Semiconductor Oxide Films with
Low Environmental Load | | Dept. of
Materials
Science and
Engineering | | P_I01 | Ngoc Duy Pham | Ngoc Duy
Pham, Shujuan
Huang, Weijian
Chen, Hongxia
Wang, Baohua
Jia, and
Xiaoming Wen | Novel p-dopant for Spiro-
OMeTAD-based Hole-
Transporting Materials towards
Efficient and Stable Perovskite
Solar Cells | Macquarie
University | School of
Engineering | | P_I02 | Al Jumlat Ahmed | Al Jumlat
Ahmed | Thermoelectric Performance of Nano-engineered Perovskite Oxide Materials Sr ₁ -xLaxTiO ₃ and Ba _{1-x} LaxTiO ₃ | University of
Wollongong | Institute for
Superconductin
g and Electronic
Materials | | P_I03 | Hongxia Wang | Hongxia Wang | Towards Cost-Effective, Stable
and Greener Perovskite based
Solar Cells and Light Emitting
Diode | University of | Centre for
Materials
Science | ## A. Alternative energies A_101 ## Prof. Dr. S. Sakthinathan #### Affiliation: Department of Materials and Mineral Resources Engineering, National Taipei University of Technology (NTUT). No. 1, Section 3, Chung-Hsiao East Road, Taipei, Taiwan 106 (ROC) Position: Assistant Professor (Research) Email: sakthinathan1988@gmail.com | | 2011 2012 Master of Science (M.Sa.) in Chemistry School of Chemistry | |------------|---| | | • 2011- 2013, Master of Science (M.Sc.) in Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. | | | 2013- 2014, Project Associate, National Centre for Catalysis Research
(NCCR), Indian Institute of Technology (IIT), Chennai. | | Education | 2014-2017, Ph.D. Research Scholar, Department of Chemical Engineering
and Biotechnology, National Taipei University of Technology, Taiwan. | | | 2017-2019, Post-Doctoral Research Fellow, Department of Material
Science Engineering, National Taipei University of Technology
(NTUT),
Taiwan | | | • 2019-2021, Research Associate, Department of Material Science Engineering, National Taipei University of Technology (NTUT), Taiwan. | | | Project Associate-"Synthesis of Higher Number Carbon Alcohols" National
Centre for Catalysis Research (NCCR), Indian Institute of Technology (IIT),
Chennai, India- 600036. | | Experience | Summer Research Project-"Synthesis and Spectroscopic Properties of Few
Metalloporphyrin Complexes" Bioinorganic Laboratory, Indian Institute of
Technology (IIT) Kanpur-620024, Uttar Pradesh, India. | | | Visiting Researcher at the department of physical chemistry, University of
Madras, November 2019. | | Honors and | Certificate of the excellence award-Winning 2016 sunshine scholarship in
the faculty and student research category. | | Awards | Awarded Taipei Tech International Graduate School Student Scholarship
for Academy Year 2014-2017. | | | | - Awarded with Summer Research Fellowship for the year 2011-2012 by Indian Academy of Science (IAS), India for meritorious postgraduate students. - First Rank student in Under Graduate, A.V.V.M. Sri Pushpam College, Tamilnadu, (2008 to 2011 Batch) - Proficiency Prize Winner in Chemistry A.V.V.M. Sri Pushpam College, Tamilnadu, (2010&2011) - Best Paper Presentation Award at International Symposium On Smart Sensing Technology & 20th Symposium of Association for Chemical Sensor in Taiwan (2015) - Distinguished paper award from an association of chemical sensor Taiwan. - Received travel grant from Ministry of Science and Technology (MOST) Taiwan for Third International Conference on 2D Materials and Technology (ICON-2DMAT), Nanyang Technological University, December 11-15th 2017 Singapore. - Received travel grant from Ministry of Science and Technology (MOST)-Taiwan for ISAF-FMA-AMF-AMEC-PFM joint conference (IFAAP) to be held during May-27- June 1, 2018, at the International Convention Center, Hiroshima, Japan. - Visiting post-doctoral fellow at the department of physical chemistry, University of Madras, 2018. ### Efficient Electrocatalyst for Hydrogen Evolution Reaction based on Delafossite Materials supported Carbon composite Subramanian Sakthinathan 1*, Karthi keyan Arjunan 1, Dhanapal Vasu 1, Te-Wei Chiu 1* ^{1*} Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan, *Corresponding Author: sakthinathan1988@gmail.com #### **Abstract** Fossil fuels are used to fulfill the world's energy needs as high energy sources, but they also cause excessive environmental pollution. Hence, alternative energy sources are being explored at the moment to generate more energy while polluting the environment less. For all the renewable energy sources, hydrogen is a very important, environmentally friendly alternative energy source. Hydrogen production can be achieved by low-cost electrochemical water electrolysis. Delafossite materials have low electrical resistivity and great potential as a new class of catalysts for applications in electrochemical water splitting. Especially, copper-based delafossite materials have a wide variety of interesting electronic properties such as good electrical conductivity and optical properties. Moreover, Cu-based delafossite materials such as CuCrO₂, CuAlO₂, and CuFeO₂ have good catalytic activity in water splitting. The CuCrO₂, CuAlO₂, and CuFeO₂ delafossite complex were incorporated with nitrogen and boron-doped reduced graphene oxide (N-rGO, B-rGO) and multiwalled carbon nanotubes (MWCNT) based nanocomposite (N-rGO-MWCNT) for the hydrogen evolution reaction (HER). The CuCrO₂, CuAlO₂, and CuFeO₂ delafossite complex were made by self-combustion glycine nitrate process (GNP), and the N-rGO-MWCNT and B-rGO-MWCNT composite was prepared by the hydrothermal method. The morphology was characterized by spectroscopy and microscopy techniques. The materials were structurally well ordered with a porous structure and high surface area. The GCE/N-rGO-MWCNT/CuAlO₂, GCE/B-rGO-MWCNT/CuFeO₂, and GCE/N-rGO-MWCNT/ CuCrO₂ electrode exhibited an electrocatalytic activity for the HER under strongly acidic conditions with a low over-potential, increasing reduction current, and a small Tafel slope of 48 mV dec⁻¹, 54 mV·dec⁻¹, 62 mV·dec⁻¹, respectively at 10 mA cm⁻¹ with long-term stability. Furthermore, the aforementioned electrodes were correlated with Pt/C and exhibited superior electrocatalytic performance towards the HER in acidic media. Therefore, the electrode appears to be an excellent catalyst for the electrocatalytic reaction of HER. Keywords: Hydrogen evolution reaction, MWCNT, Graphene oxide, Delafossite complex, Acidic media #### References - [1] K. K. Arjunan, R. Rajakumaran, S. Sakthinathan, S. M. Chen, T. W. Chiu, S. Vinothini, ECS J. Solid State Sci. Technol., 10, 045011 (2021). - [2] S. Sakthinathan, A. K. Keyan, R. Rajakumaran, S. M. Chen, T. W. Chiu, C. Dong, S. Vinothini, *Catalysts.*, 11, 301 (2021) # B. Battery and energy storage B_I01 # Dr. Nguyen Van Nghia ## **Affiliation:** Training, Research and Development Center Open Training Institute Hanoi Architectural University ### **Position:** Vice Director of Training, Research and Development Center Email: nghianv@hau.edu.vn | Education | Hanoi 2 Pedagogical University, Bachelor Degree of Physics (2004) Hanoi 2 Pedagogical University, Master Degree of Condensed Matter Physics (2010) YuanZe University ,Doctor Degree of Material Sciences (2015) | |----------------------|---| | Experience | Sodium-ion batteryLithium-ion battery | | Honors and
Awards | Doctor Programe Vietnam Government Scholarship (VEST 500) (2011) Excellent in Research Award, Hanoi Architectural University (2019) | # Carbon coated sodium manganese oxide as a cathode material for sodium-ion battery <u>Van-Nghia Nguyen^{1,*}</u>, Van-Nguyen To², Van-Ky Nguyen², Quy-Quyen Ngo², Trung-Son Luong², Manh-Thao Pham², Manh-Ha Hoang¹, Thi-Thu-Hoa Nguyen¹ ^{1*} Open Training Institute, Hanoi Architectural University, Vietnam, nghianv@hau.edu.vn ² Department of Chemical Engineering, Le Quy Don Technical University, Viet Nam *Corresponding Author ### **Abstract** Sodium-ion battery (SIB) is a candidate for large scale energy storage devices. P2-type layered structure materials have been known as high capacity cathode materials for SIB. However, the low rate capability of the materials has restricted the practical applications of SIB. In this study, we enhanced the performance of a P2-type layered strucutre sodium-manganese oxide (NMO) by coating carbon on the material surface. X-ray diffraction (XRD), Raman spectra, thermal gravimetric (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) analyses were used to investigate structure and morphology of pristine NMO and carbon-coated sodium-manganese oxide (NMO@C). The electrochemical test results showed that the performance of NMO@C material is higher than that of pristine NMO. The specific capacity of NMO@C is 160 mAh g⁻¹ at 0.1 C, which is 33% higher than that of pristine NMO material; The capacity of NMO@C material at high charged/discharged rate of 1 C is 115 mAh g⁻¹ meanwhile the capacity of NMO material at 1 C is negligible. The Electrochemical Impedance Spectrum (EIS) shows that lower Ohmic resistance, charge transfer resistance (R_p), and Warbug impedance of NMO@C material compared to those of NMO material had improved the electrochemical performance of NMO@C. **Keywords: Layered** structure, Carbon coating, Cathode, Sodium-ion Battery # Dr. Manas Ranjan Panda Affiliation: Monash University, Australia **Position**: Postdoctoral Research Fellow Email: manasranjan056@gmail.com | Education | Ph.D. from IITB-Monash Research Academy (A joint research collaboration between Indian Institute of Technology Bombay, India and Monash University, Australia) Master of Science in Physics from Pondicherry Central University, Pondicherry, India | | | | | | |----------------------|---|--|--|--|--|--| | Experience | Postdoctoral Research Fellow, Faculty of Engineering, Monash University, Australia from Jan 2021. Ph.D. Researcher, IIT Bombay, India & Monash University, Australia, 2016-2020. Junior Research Fellow, Department of Physics, Pondicherry Central University, India, 2013-2015. | | | | | | | Honors and
Awards | IIT Bombay, India & Monash University, Australia Graduate Fellowship, 2016-2020. Tata Chemicals Best Journal Paper Award by the IITB-Monash Research Academy for the year 2019-2020. Thermo Fisher Scientific Best Collaborations award by the IITB-Monash Research Academy for the year 2018–2019. | | | | | | # Probing the Li⁺/Na⁺ Storage Mechanism of 2D Transition Metal Dichalcogenides Using Synchrotron-Based X-ray Techniques Manas Ranjan Panda^{1,2,3,4*}, Qiaoliang Bao², Mainak Majumder¹, and Sagar Mitra³ ¹Department of Mechanical and Aerospace Engineering, Nanoscale Science and Engineering Laboratory (NSEL), Monash University, Clayton, Victoria 3800, Australia ²Department of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia ³Department of Energy Science and Engineering, Electrochemical Energy Laboratory, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India ⁴IITB Monash Research Academy, Bombay, Powai, Mumbai 400076, India *Corresponding author: manasranjan056@gmail.com #### **Abstract** Transition metal dichalcogenides (MX_2 , M = Mo or W and X = S, Se or Te) recently gained research attention as electrode materials for rechargeable lithium/sodium-ion batteries. These materials are promising candidates to realize the demands for superior rate performance, long cycle life, and higher power and energy density requirements. So far, the unclear structural and electrochemical reaction mechanisms are the major challenges for implementing these materials as potential electrodes. As a part of this objective, we have studied a new class of bulk semiconducting transition metal dichalcogenides, specifically, the 2D layered structure of molybdenum ditelluride ($MoTe_2$). $MoTe_2$'s relatively high interlayer spacing of about 0.70 nm (graphite (0.335 nm) and MoS_2 (0.615 nm)) and its higher electronic conductivity make it an efficient anode material for both lithium/sodium-ion batteries. We have explored the lithium/sodium storage mechanism in the 2H phase of $MoTe_2$ using Synchrotron-based experimental techniques alongside theoretical studies. **Keywords:** Transition metal dichalcogenides, Molybdenum ditellurides, Anode materials, Lithium/sodium-storage mechanisms, Synchrotron-based in situ/ex-situ experimental techniques - [1] M. R. Panda, A. Raj, A. Ghosh, A. Kumar, D. Muthuraj, S. Sau, W. Yu, Y. Zhang, A. K. Sinha, M. Weyland, Q. Bao, S. Mitra, *Nano Energy*, 64, 103951 (2019). - [2] M. R. Panda, R. Gangwar, D. Muthuraj, S. Sau, D. Pandey, A. Banerjee, A. Chakrabarti, A. Sagdeo, M. Weyland, M. Majumder, Q. Bao, S. Mitra, *Small*, 16, 2002669 (2020). - [3] J. S. Cho, H. S. Ju, J. K. Lee, Y. C. Kang, *Nanoscale*, 9, 1942 (2017). - [4] N. Ma, X. Y. Jiang, L. Zhang, X. S. Wang, Y. L. Cao, X. Z. Zhang, Small, 2018, 14, 1703680 (2018). - [5] D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, *Nat. Phys.*, 11, 482 (2015). - [6] Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, *Nat. Commun.*, 7, 1 (2016). # Dr. Debasmita Dwibedi ## Affiliation: Yamada Laboratory, University of Tokyo ## **Position**: Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow Email: debasmita@g.ecc.u-tokyo.ac.jp | Education | Doctor of Philosophy (Ph. D.) (2013-2018), Materials Research Centre, | |----------------------|--| | | Indian Institute of Science (IISc), Bangalore, India. | | | • Master of Science (M. Sc.) (2010-2012), School of Physical Sciences, | | | Pondicherry University, Puducherry, Tamilnadu, India | | | • Bachelor of Science (B. Sc.) (2007-2010), Department of Physics | | | Ravenshaw University, Cuttack, Odisha, India. | | Experience | Postdoctoral Researcher at Yamada-Okubo laboratory, Chemical System
Engineering, The University of Tokyo, Japan.(2019 Jan-present) | | | Research Associate at Materials Research Centre, Indian Institute of
Science | | | Project Intern at Computational Chemistry Unit, Shell Technology Centre
Bangalore, Karnataka, India. (2018 Jul- 2018 Dec) | | | JSPS Post-doctoral Fellow Awarding Body: Japan Society for the Promotion of Science Description: A highly competitive international fellowship with the purpose to award excellent young researchers, (2020) | | Honors and
Awards | IUCr Young Scientists Award Awarding Body: International Union of Crystallography (IUCr), England. Description: Awarded to young scientists worldwide involved in crystallography research. (2019) | | Awarus | Sudborough Medal Awarding Body: Material Research Centre, Indian Institute of Science Bengaluru, India. Description: Awarded to best thesis award from Material Research Centre of the academic year (2019) | | | MRS-S Graduate Student Award -2017 Awarding Body: Materials Research Society of Singapore (MRS-S), | Singapore. Description: Awarded to 5 students worldwide involved in materials science (2017) - ECS Herbert H. Uhlig Summer Fellowship -2017 Awarding Body: The Electrochemical Society (ECS), USA. Description: Awarded to 4 students worldwide involved in electrochemical science. (2017) - Ludo Frevel Crystallography Scholarship Award -2017 Awarding Body: International Centre for Diffraction Data (ICDD), USA. Description: Awarded to 10 Ph.D. students worldwide involved in crystallography research. (2017) # Insights into Stabilization of α -Na₂Fe(SO₄)₂ and Structure, Polymorphism and Electrochemistry Thereof Debasmita Dwibedi¹, Shini-ichi Nishimura¹, Prabeer Barpanda², Atsuo Yamada¹ ¹Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan ²Faraday Materials Laboratory, Materials Research Centre, Indian Institute of Science, Bangalore,India. *Corresponding author: debasmita@g.ecc.u-tokyo.ac.jp #### **Abstract** To enhance the safety, cost, and energy density of new generation Na-ion batteries, significant research efforts have been devoted to the search for new positive electrode materials or optimisation of promising materials that exhibit high redox potentials and are composed of low-cost and environmentally benign earth-abundant elements. Among various reported positive electrode materials, sulfate chemistry has yielded promising results for iron-based polyanionic materials using the Fe^{III+}/Fe^{II+} redox couple invoking the highly electronegative attributes of sulfates via inductive effect. Additionally, sulfur and sulfate-based compounds are very economic, being the by-products of fuel combustion, coal power plants and oil/petrochemical industries. Hence, Na-Fe-S-O quaternary system renders promising scope to design sustainable high-voltage cathodes for sodium-ion batteries, including the discovery of monoclinic alluaudites Na₂Fe₂(SO₄)₃ phase with the highest ever Fe³⁺/Fe²⁺ redox potential at 3.8 V (vs. Na). [1, 2] In present work, we thoroughly investigated another promising cathode α-Na₂Fe(SO₄)₂ of Na-Fe-S-O quaternary sulphates. Although the titled compound has previously been studied, there are no successful synthesis reported so far, thus referring the same as highly metastable phase. [3] With an insight from gravimetric analysis and controlled Pechini based aqueous synthesis route we successfully stabilised the α -Na₂Fe(SO₄)₂. The as-synthesized material delivers a decent reversible discharge capacity approaching 90 mAh/g, involving Fe³⁺/Fe²⁺ redox activity centered at 3.5 V. Further, we report the ball-milling synthesis and electrochemical properties of its alluaudite polymorph of Na₂Fe(SO₄)₂, with 3.6 redox activity (vs. Na) and an overall sustained capacity of about 90 mAh/g. Using similar synthesis conditions, the cobalt-, manganese, and nickelbased Na-Fe-S-O analogues have also been studied. Overall, our results will demonstrate that polymorphism can play a crucial role in the search for new battery electrode materials and emphasize the need to understand and master synthetic control. A detailed study on the Na-M-S-O quaternary systems showing phase transformation, compositional and structural flexibility relating to their electrochemical performances has been the focus of this investigation. **Keywords: Cathode**, Sodium-ion battery, alluaudites - [1] P. Barpanda, G. Oyama, S. I. Nishimura, S. C. Chung, A. Yamada, Nat. Commun., 5, 1, (2014). - [2] G. Oyama, S. I. Nishimura, Y. Suzuki, M. Okubo, A. Yamada, ChemElectroChem, 7, 1019, (2015). - [3] M. Reynaud, G. Rousse, A. M. Abakumov, M. T. Sougrati, G. Van Tendeloo, J. N. Chotard, J. M. Tarascon, J. Mater. Chem. A, 8, 2671, (2014). # **Prof Van-Duong Dao** ## Affiliation: Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 10000, ietnam **Position**: Dean Email: duong.daovan@phenikaa-uni.edu.vn | Education | July 2007: BS in Chemical Engineering, Hanoi University of Technology, Vietnam | |----------------------|---| | | Feb 2013: PhD in Chemical Engineering, Chungnam National University, Korea | | | 2018-present: Dean of Faculty of Chemical Engineering Phenikaa University, Vietnam | | | 2016- 2018: Research Professor Chungnam National University, Korea | | Experience | 2015-2020: Korea Research Fellowship Chungnam National University,
Korea | | | 2015-2017: Postdoc, declined University of Hyogo, Japan | | | 2014-2015: NRF Postdoc Fellowship Chungnam National University,
Korea | | | 2013-2014: Invited Scientist Korea Institute of Science and Technology,
Korea | | | 2013-2014: Postdoc Chungnam National University, Korea | | | 2015-2020 Advanced International Grant for research and development
of highly efficient next-generation solar cells. Grant is funded by the
National Research Foundation, Ministry of Science, Republic of Korea. | | Honors and
Awards | 2014-2015 Research Fellowship Grant for
the development of a strategy
for synthesis graphene-based hybrid materials and their applications in
next-generation solar cells. Grant is funded by the National Research
Foundation, Ministry of Science, Republic of Korea. | | | 2019 Top 1% of Peer Reviewers in Cross-Field (2018-2019) on Publons
global reviewer database | | • | 2017 Outstanding KRF Fellow of National Research Foundation | |---|---| | | | ### **Environmental energy harvesting based on nanogenerator** Van-Duong Dao* Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 10000, Vietnam *Corresponding Author: duong.daovan@phenikaa-uni.edu.vn #### **Abstract** With the fast development of Internet of Things (IoT), the energy supply for all the electronics and sensors has become a critical challenge. The energy harvesting from the environment has a great potential to demand energy due to its easy fabrication and operation. In this talk, we first present next-generation solar cells, which were fabricated with different counter electrodes fabricated by dry plasma reduction method. Note that the dry plasma reduction can work under atmospheric pressure, low temperature (70oC), and short reduction time (15 min). Then we concentrate on advances in the recent development of nanogenerators based on solar to water evaporation-induced electricity generation systems for possible application in the IoT, resistive switching memory, supports big data and in the future of the generated electricity as power sources for some small electronic devices like a liquid crystal display, a blue light-emitting diode, an electric fan, and light-emitting diodes; for energy storage such as a capacitor, for electrochemical deposition and electrochemical cells. Lastly, future opportunities and difficulties to develop nanogenerator for environment energy harvesting. **Keywords:** dry plasma reduction; nanogenerator; water evaporation-induced electricity; solar to steam; energy harvesting. - [1] V.-D. Dao, C.Q. Tran, S.-H. Ko, H.-S. Choi, J. Mater. Chem. A 1, 4436 (2013). - [2] V.-D. Dao, N. H. Vu, S. Yun, *Nano Energy* 68, 104324 (2020) - [3] V.-D. Dao, N. H. Vu, H.L.T. Dang, S. Yun, Nano Energy 85, 105979 (2021) - [4] V.-D. Dao, N. H. Vu, H.S. Choi, J. Power Sources 448, 227388 (2020) - [5] V.-D. Dao, Science of the Total Environment 759, 143490 (2021) # **Prof. (Mrs) Tungabidya Maharana** Affiliation: NATIONAL INSTITUTE OF TECHNOLOGY RAIPUR **Position**: ASSISTANT PROFESSOR Email: tmaharana.chy@nitrr.ac.in | Education | M.Sc. in Chemistry | |------------|---| | | Ph.D. in Polymer Science and Technology | | | Assistant Professor at National Institute of Technology Raipur since 2013 | | Experience | Assistant Professor at Ravenshaw University Odisha from 2011 to 2013 | | | | | | Completed seven Sponsored projects by DST, CSIR, UGC, BRNS and TEQIP | | | Young Scientist Award by DST in 2014 | | | "National Doctoral Fellowship" offered by AICTE India for pursuing Ph.D.
at IIT Roorkee | | Honors and | Awarded 325 USD for my publication in Progress in Polymer Science | | Awards | Qualified National Eligible Test for LECTURESHIP conducted by CSIR-UGC | | | Qualified All India Graduate Aptitude Test in Engineering (GATE) | | | Best Oral presentation at International Conference APCBEES Taipei
Taiwan in Nov 2016 | # Development of Paper-Based Flexible Supercapacitor Fabricated Using Polypyrrole Rama Devi¹, Kavita Tapadia¹, Alekha Kumar Sutar², Tungabidya Maharana^{1*}, ^{1*} Department of Chemistry, National Institute of Technology, Raipur, CG, 492010, India, ² School of Chemistry, Gangadhar Meher University, Sambalpur, Odisha, India *Corresponding Author: tmaharana.chy@nitrr.ac.in #### **Abstract** Paper-based supercapacitors have attracted more attention for their high electrochemical performance. However, most of them adopt sandwiched structure. In the present investigation, a simple approach has been followed for fabrication of paper-based flexible symmetrical supercapacitor, an energy saving device with composite functional material of nickel nanoparticles (Ni NPs) and polypyrrole (PPy). PPy has been chosen owing to its facile synthetic route and low cost. Ni@PPy nanocomposite is synthesized through two-step process involving the growth of Ni NPs followed by pyrrole polymerization on the paper substrate. The paper-based supercapacitor fabricated with Ni@PPy has shown electrical conductivity of 105 Scm⁻¹. The paper-based flexible supercapacitor device configured with Ni@PPy/electrolyte/Ni@PPy is evaluated for its electrochemical performance which showed a good specific capacitance of 544 Fg⁻¹ at 1 Ag⁻¹. The better specific energy of 48 Whkg⁻¹, specific power of 400 Wkg⁻¹, good cycling stability (68.3% capacitance retention after 3000 cycles at 5 Ag⁻¹) are obtained for paper-based flexible supercapacitor compared to other reported polymer based nanocomposite materials. The paper-based supercapacitor is highly efficient, portable and flexible for variety of electronic applications. **Keywords:** Paper-based supercapacitor, Energy storage, Nickel nanoparticles, Polypyrrole, Nanocomposites - [1] R. Devi, K. Tapadia, T. Kant, A. Ghosale, K. Shrivas, I. Karbhal, and T Maharana, *New J. Chem.*, **44**, 13446 (2020). - [2] Y. Wang, Y. Lu, K. Chen, S. Cui, W. Chen, and L. Mi, *Electrochim. Acta*, 283, 1087 (2018). - [3] N. Liu, Y. Su, Z. Wang, Z. Wang, J. Xia, Y. Chen and F. Geng, ACS Nano, 11, 7879 (2017). - [4] C. Ma, W-T Cao, W. Xin, J. Bian, and M-G Ma, Ind. Eng. Chem. Res., 58, 27, 12018 (2019). - [5] C.C. Chang and T. Imae, ACS Sustain. Chem. Eng., 6, 5162-5172 (2018). - [6] L. Fu, X. Fu and F. Zhao, Chem. Phy. Lett., 765, 138290 (2021). # Prof. Prabeer Barpanda Affiliation: Indian Institute of Science **Position**: Associate Professor Email: prabeer@iisc.ac.in | Education | B. Engg. (Hons.), National Institute of Technology Rourkela (NITR), India (2002) M. Phil., The University of Cambridge, UK (2004) Ph. D., Rutgers University, NJ, USA (2008) | | | | | | |----------------------|---|--|--|--|--|--| | Experience | CNRS Postdoctoral Fellow, Universite de Picardie Jules Verne, France (2009-2010) JSPS Postdoctoral Fellow, The University of Tokyo, Japan (2010-2013) Assistant Professor, Indian Institute of Science, Bangalore, India (2013-2019) Associate Professor, Indian Institute of Science, Bangalore, India (2019-present) | | | | | | | Honors and
Awards | Humboldt Research Fellowship for Experienced Researchers, Alexander von Humboldt Foundation, Germany. (2021) Emerging Investigators of Journal of Materials Chemistry, Royal Society of Chemistry (RSC), UK. (2019) Ross Coffin Purdy Award, The American Ceramic Society (ACerS), USA. (2016) Energy Technology Division S. Srinivasan Young Investigator Award, The Electrochemical Society (ECS), USA. (2016) ISE Prize for Applied Electrochemistry, International Society of Electrochemistry (ISE), Switzerland. (2015) JSPS Postdoctoral Fellowship, Japan Society for the Promotion of Science (JSPS), Japan. (2010) | | | | | | - H.H. Dow Student Achievement Award, The Electrochemical Society (ECS), USA. (2008) - C.G. Fink Summer Fellowship, The Electrochemical Society (ECS), USA. (2007) - Shell Centenary Chevening Fellowship, The British Council, UK. (2003) ### Perovskite lead-based anodes for secondary batteries Anshuman Chaupatnaik, Prabeer Barpanda* Faraday Materials Laboratory (FaMaL), Materials Research Centre, Indian Institute of Science, Bangalore 560012, India *Corresponding Author: prabeer@iisc.ac.in #### **Abstract** In the quest to find new anode materials, various insertion, conversion and alloying based compounds have been reported. Here, putting perovskite frameworks on anvil, lead-based perovskites (PbTiO₃ and PbZrO₃) are introduced as novel anode materials for non-aqueous M-ion rechargeable batteries (M = Li, Na, K). These compounds were scalably prepared by conventional solid-state and combustion routes. Charge storage in these perovskites involves a standard conversion (Pb^{II} →Pb⁰) followed by reversible Li-Pb/Na-Pb/K-Pb (de)alloying reaction. The oxide matrix (M₂O, TiO₂ etc.) phase is crucial for reversibility of Pb alloying reaction, as pristine PbO fails fast. The conversionalloying reaction mechanism has been verified by ex situ electron microscopy (TEM) study. PbTiO₃ delivered 410 mAh/g capacity in the first charge (vs. Li/Li⁺, Na/Na⁺), while around 180 mAh/g capacity (vs. K/K⁺). Particularly, PbTiO₃ forms a robust anode for sodium-ion batteries with maximum charge extracted under low voltage (below 0.8 V vs. Na/Na⁺, 275 mAh/g). Similar electrochemical activity was also noticed for other perovskites like PbZrO₃ that confirms Pb-based (simple and mixed) perovskites can form a potential class of battery anode materials. Keywords: Battery; Anode materials; Perovskite; PbTiO₃ # **Prof Tran V. Thu** Affiliation: Le Quy Don Technical
University **Position**: Lecturer Email: thutv@mta.edu.vn | Education | 2011, PhD. in Materials Science, Japan Advanced Institute of Science and Technology, Japan 2005, M. Eng. in Chemical Engineering, Le Quy Don Technical University, Vietnam 2002, B. Eng. in Chemical Engineering, Le Quy Don Technical University, Vietnam | |----------------------|---| | Experience | 2015-, Lecturer, Le Quy Don Technical University, Vietnam 2012-2014, Specially-appointed Assistant Professor, Toyohashi University of Technology, Japan 2008-2011, Research Assistant, Japan Advanced Institute of Science and Technology, Japan 2002-2008, Instructor, Le Quy Don Technical University, Vietnam | | Honors and
Awards | | # Graphene-MnFe₂O₄-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode $\underline{\text{Tran V. Thu}^{1*}}$, To V. Nguyen 1 , Le X. Duong 1 , Le T. Son 1 , Vu V. Thuy 1 ¹Department of Chemical Engineering, Le Quy Don Technical University, Viet Nam *Corresponding Author: thutv@mta.edu.vn ### **Abstract** Hybridization of dissimilar materials is a promising solution to improve desired properties in various applications. Herein, we chemically grew a conductive polymer (polypyrrole, PPy) on graphene-supported manganese ferrite microspheres (MG, \sim 344 nm in size) to form PPy/MG hybrids at various PPy contents (20, 33.3, and 42.9 wt%). PPy, MG binary, and PPy/MG ternary hybrids were comprehensively characterized to correlate their structure, morphology, and properties. Electrochemical measurements revealed a significantly enhancement of capacitive performances of PPy/MG as comparison to those of each component. Consequently, the combination of PPy and MG resulted in maximum specific capacitance of 147.2 F/g at scan rate of 10 mV/s or 66.1 F/g at current density of 0.5 A/g. These synergistic and cooperative effects are attributed to reduced diffusion resistance in the PPy/MG hybrids. This work thus suggests an efficient strategy to develop high-performance material for supercapacitor electrode [1]. **Keywords:** Graphene oxide, MnFe₂O₄, Polypyrrole, Ternary hybrids, Supercapacitor, Synergistic effect ### References [1] TV Thu, *Electrochim. Acta* 314, 151-160 (2019). # **Prof. P Muhammed Shafi** ## Affiliation: School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Republic of Korea **Position**: Assistant Professor Email: shafiparasseri@ynu.ac.kr | | Ph.D. from National Institute of Technology Tiruchirappalli, India | | | |----------------------|--|--|--| | Education | M.Sc. Physics from Aligarh Muslim University, India | | | | | | | | | | Postdoctoral researcher from 2019 to 2020 at Yeungnam University | | | | Experience | Assistant professor from 2020 to date. | | | | | | | | | | Qualified all India GATE 2013 (among the top 7.3%). | | | | | Junior Research Fellowship from Ministry of Human Resource, Govt. of India
(July 2013-June 2015). | | | | Honors and
Awards | Senior Research Fellowship from Ministry of Human Resource, Govt. of India
(June 2015-October 2018). | | | | | SPIE International Travel support to attend SPIE optics and Photonics conference Aug 28 – Sep 1, 2016 at San Diego, California, USA. | | | # Three Dimensional NiO Nanonetwork Electrode for Efficient Ultra-fast Electrochemical Energy Storage Application Nikhitha Joseph^{a,} , P Muhammed Shafi^{b*,} , J. S. Sethulakshmi^a, Raj Karthik^b, A Chandra Bose^{1a*}and, Jae-Jin. Shim^{b*} ^aDepartment of Physics, National Institute of Technology, Tiruchirappalli-India 620015 ^bSchool of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea ^{*}Corresponding Author: shafiparasseri@ynu.ac.kr #### **Abstract** Electrochemical capacitors have achieved prodigious attention among energy storage devices due to their simple and efficient storage mechanism, moderate specific energy and power densities which bridge the gap between Li-ion batteries and physical capacitors. The performance of active material plays a foremost role in the energy storage mechanism of such storage devices. Here, we have developed a porous Nickel oxide (NiO) nest-like particle with a large surface area and used as cathode material for supercapacitor application. The porous NiO electrode exhibits an excellent electrochemical performance with a specific capacity of 422 C g⁻¹ at 1 A g⁻¹ specific current. Moreover, the NiO//AC asymmetric device exhibited higher specific energy of 25 Wh kg⁻¹ at a specific power of 1280 W kg⁻¹ and could maintain more than 50% of specific energy at an extra-high specific power of 19.2 kW kg⁻¹. Surprisingly, the device exhibits an ultra-fast power delivery performance with a considerably lower response time (13 ms). The porous NiO nanonetwork-based electrode manifests a great potential to be an ultra-fast efficient next-generation electrode candidate for electrochemical energy storage devices. **Keywords:** Nickel Oxide, Energy storage, Supercapacitor, Battery-type. ### References [1] Conway, B.E., 2013. Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media. # **Prof. Prasant Kumar Nayak** ## Affiliation: Department of Chemistry, SRM Institute of Science and technology, Kattankulathur-603203, Tamil Nadu, India. **Position**: Assistant Professor Email: prasantnayak15@gmail.com | Education | Ph. D: Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore | |----------------------|---| | Experience | Postdoctoral research fellow, Prof. Doron Aurbach's group, Bar-Ilan University, Israel (2012-2016) Postdoctoral research scientist (2016-2018), Prof. Philipp Adelhelm's group, Friedrich Schiller University, Jena, Germany | | Honors and
Awards | | B 109 ### High-capacity layered oxide cathode materials for rechargeable Li-ion batteries Prasant Kumar Nayak* Department of Chemistry, SRM Institute of Science and technology, Tamil Nadu, India. *Corresponding Author: prasantnayak15@gmail.com #### Abstract Owing to the increasing energy demand, depletion of fossil fuels and environmental pollution, there is growing interest on renewable energy storage and conversion. Electrochemical energy storage devices such as batteries play an important role in the renewable energy storage, which can be used on demand. Among various battery technologies, rechargeable Li-ion batteries possess high energy density and long cycle-life and hence dominating as the power source for the portable electronic devices such as smartphones, laptops etc. The 2019 Nobel Prize in Chemistry was awarded to three eminent scientists, namely, Prof. Goodenough, Whittingham and Yoshino for the development of Li-ion batteries that has created a rechargeable world. These Li-ion batteries are going to be implemented soon to drive the electric vehicles. However, their energy density is limited by the specific capacity as well as the potential of electrode materials, especially that of cathode materials. There are three types of cathode materials, i.e., layered oxides, spinel oxides and polyanionic compounds, already explored till to date. Among them, layered oxides are known to exhibit high specific capacities while spinels such as LiMn₂O₄ and LiNi_{0.5}Mn_{1.5}O₄ are known to exhibit high voltage, but low specific capacity. Commercialized cathode materials such as $LiCoO_2$, $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ and $LiMn_2O_4$, etc., can provide specific capacities ≤ 170 mAh g⁻¹. However, the energy density of Li-ion batteries should be increased in order to make the related applications more versatile. Layered Li and Mn-rich oxide cathodes with $xLi[Li_{1/3}Mn_{2/3}]O_2$.(1-x) $LiMO_2$ (M=Ni, Mn, Co) are shown to exhibit capacities ≥ 250 mAh g⁻¹. However, they suffer from capacity fading and average discharge voltage decay on cycling, leading to decrease in the energy density. Hence it is essential to improve the performance of these cathode materials by adopting various approaches such as fine tuning the composition and using additives to the electrolyte, which I would be reflecting in this presentation. **Keywords:** Li-ion battery, Li and Mn-rich, high-capacity cathodes # E. Energy efficiency technologies and applications ${\tt E_I01}$ # **Prof. Horng-Show Koo** ## **Affiliation:** Taipei University of Marine Technology / College of Innovative Design and Department of Visual Communication Design. Position: Full-time Professor with Dean and Chairman Email: franky0416@mail.tumt.edu.tw | Education | PhD, Institute of Electro nics, National Chiao Tung University. | |------------|--| | | Master, Institute of Mechanical Engineering, National Chiao-Tung
University. | | | Bachelor, Dept. Chemical Engineering, National Taiwan, Institute of
Technology | | | Visiting Scholar, Institute of Physics, Academia Sinica,
Taipei, Taiwan | | | Visiting Scholar, Centre of Excellence for Advanced Silicon Photovoltaic
and Photonics, The University of New South Wales University (UNSW),
Sydney, Australia | | | Visiting Researcher, Department of Frontier Informatics, Graduate
School of Frontier Sciences, The University of Tokyo, (Kashiwa Campus)
(Tokyo Japan) | | Experience | Visiting Researcher, Department of Physics with Advanced Display
Research Center[Former Solar Cell Research Lab.], Kyung Hee University
(Seoul Korea) | | | Visiting Foreign Researcher and Visiting Professor, Industrial Scientific
Research Institute, Nanoscience and Nanotechnology Center, Osaka
University | | | Guest Researcher, Semiconductor Research Institute, Semiconductor Research Foundation Japan | | | Project Manager with Engineer/ Researcher(Optoelectronic System
Lab.), Industrial Technology Research Institute | | Honors and
Awards | | | |----------------------|--|--| | | | | E 101 ## Recent Progress on Gallium Oxide Ceramic Materials and Thin Films for Highefficiency and Energy-saving Applications Horng-Show Koo^{1*}, Mi Chen² ^{1*}College of Innovative Design and Department of Visual Communication Design, Taipei University of Marine Technology, Taiwan ²Department of Applied Materials Science and Engineering, Minghsin University of Science and Technology, Taiwan *Corresponding Author: franky0416@mail.tumt.edu.tw #### **Abstract** Gallium oxide (Ga2O3) have been considered as the next generation and the most promising semiconductor material for the applications of high-efficiency and energy-saving power electronics [1-3]. Among various semiconductor materials and devices, Si-based technology plays critical role in the early-stage electronic industry, but followed by the concerned subjects of novel requirements and the related applications in the high-efficiency and high-performance devices and systems for energy-saving issues become necessary. Under this background, novel materials such as SiC and GaN having unique properties are used to fabricate high-performance devices for the development of energy-saving systems. However, the bandgap values of SiC/ GaN are usually greater than 3.3–3.4 eV, and will suffer different technical challenges in manufacturing. Although gallium oxide (Ga2O3) is by no means a novel material, the discovery of Ga2O3 semiconductor material, i.e. the fourth generation semiconductor, has recently attracted great attention, for device design engineers, due to some of unique material features and substrate availability, which is consistent with the requirements of applications in the field of energy-saving and green electricity. There are five kinds of polymorphic phases with α , γ , γ , δ , and ϵ in gallium oxide, since the monoclinic β -Ga2O3 is the most explored crystal structure due to its ease of heteroepitaxial / homoepitaxial growth, its thermal stability, its incredibly large bandgap of 4.5–4.9 eV, which lead to be the most readily available. In this article, we focus on the Ga2O3 semiconductor material, the related material properties of bulk/thin film, accessible process technologies and physical characteristics of basic devices are reviewed and demonstrated. Keywords: Gallium oxide, Semiconductor, Power devices, Crystal growth, Thin film - [1] B. J. Baliga, *IEEE Electron Device Lett.*, 10, 455(1989). - [2] E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, *J. Cryst. Growth*, 270, 420 (2004). - [3] D. Shinohara and S. Fujita, Jpn. J. Appl. Phys., Part 1 47, 7311 (2008). ## Dr. Alice Lee-Sie EH ### Affiliation: - a. School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore. - b. Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore. Email: liceeh@ntu.edu.sg, pslee@ntu.edu.sg | Education | Ph.D. School of Materials Science and Engineering, Nanyang
Technological University (NTU), Singapore. | |------------|--| | | M.S. School of Chemical Sciences, Universiti Sains Malaysia (USM),
Malaysia. | | | B.S. Ed. School of Educational Studies, Universiti Sains Malaysia (USM), Malaysia. | | Experience | Research fellow, School of Materials Science and Engineering, Nanyang
Technological University, Singapore. | | | Research associate, School of Materials Science and Engineering,
Nanyang Technological University, Singapore. | | | Offered AGC Internship Programme in Japan (May – Aug 2020, cancelled
due to COVID-19). | | Honors and | Awarded Women in Engineering, Science, and Technology Conference
Grant Recipient 2019 (WiEST@NTU, Micron prize). | | Awards | Awarded Metrohm Singapore Young Chemist Award 2018 (First prize). | | | | ### Robust tristate reversible electrochemical mirror electrochromic devices Alice Lee-Sie Eh^{1,2*}, Pooi See Lee^{1,2*} ¹School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore ²Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore *Corresponding Author: aliceeh@ntu.edu.sg, pslee@ntu.edu.sg ### **Abstract** Electrochromics, which offer dynamic control of lighting and solar heat, are progressively being installed in architectural buildings, aircraft, and automobiles. Such aesthetic glazing technology improves the energy efficiency by managing the external solar irradiation into buildings, which enables lighting, heating, ventilation and air-conditioning (HVAC) energy savings when installed as the smart glass. Reversible electrochemical mirror (REM) electrochromic devices with merits of various optical states (clear, colored, and mirror states), facile device assembly, and cost effectiveness are attractive alternatives to conventional electrochromic devices. Current REM works are dominated by Ag metal, which is highly costly, poor cycling stability in the reflectance mode, and slower switching speed. By judiciously selecting the electrolyte components and understanding the electrochemistry of Cu, REM can be realized, which functions based on the mechanism of Cu electrodeposition and dissolution. As an electrochemically active material, Cu can be electrochemically tuned to achieve different redox states with controlled electrical bias. The current bottleneck in REM is the poor durability in the reflectance mode. With the incorporation of an alloying element, it could assist in the electrochemical deposition and dissolution of Cu and hence, promote reversibility. From the kinetics study, the electrochemical deposition of CuSn film is relatively fast. Sn serves to provide a nucleation layer during electrodeposition as validated using Johnson–Mehl–Avrami–Kolmogorov (JMAK) analysis. Furthermore, a hybridization approach, with its well-tailored electrolyte combination and optimization, has been designed for development of high-performance and safe REM electrolyte. The established hybrid electrolyte delivers superior electrochemical behavior, stability, faster coloration time, and the ability to tailor the redox behavior of Cu in addition to the energy storage capability. Our investigations on Cu-based REMs have shown promising outcomes for electrochromic, thermal control, and energy storage applications. These tunable mirrors are also highly attractive for dynamic displays, privacy glass, and camouflage applications. **Keywords:** Reversible electrochemical mirror devices, electrochromics, polymer electrolytes, smart windows, and energy storage. - [1] A. L.-S. Eh, J. Chen, X. Zhou, J.-H. Ciou, and P. S. Lee, "Robust trioptical-state electrochromic energy storage device enabled by reversible metal electrodeposition," ACS Energy Letters, 2021, Just accepted, DOI: 10.1021/acsenergylett.1c01632. - [2] A. L.-S. Eh, J. Chen, S. H. Yu, G. Thangavel, X. Zhou, G. Cai, S. Li, DHC Chua, and P. S. Lee, "A quasi- - solid-state tristate reversible electrochemical mirror device with enhanced stability," Advanced Science, 2020, 7, 2070073. - [3] A. L.-S. Eh, M.-F. Lin, M. Cui, G. Cai, and P. S. Lee, "A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states," Journal of Materials Chemistry C, 2017, 5, 6547-6554. - [4] A. L.-S. Eh, A. W. M. Tan, X. Cheng, S. Magdassi, and P. S. Lee, "Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects," Energy Technology, 2018, 6, 33-45 (Invited review, "Best of 2018"). - [5] A. L.-S. Eh, X. Lu, and P. S. Lee, "Advances in Polymer Electrolytes for Electrochromic Applications," in Electrochromic Materials and Devices, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2015, pp. 289-310. # **Prof. Meng-Fang Lin** Affiliation: Ming Chi University of Technology **Position**: Assistant Professor Email: mflin@mail.mcut.edu.tw | Education | Ph.D. School of Materials Science and Engineering, Nanyang Technological University, Singapore. M.S. Department of Chemistry, National Sun Yat-Sen University, Taiwan. B.S. Department of Applied Chemistry, Providence University, Taiwan. | |----------------------
--| | Experience | Engineer, National Chung-Shan Institute of Science & Technology, Material & Electro-Optics Research Division, Taiwan. Research fellow, School of Aerospace, Transport and Manufacturing, Cranfield University, United Kingdom. Senior research fellow, School of Material Science and Engineering, Nanyang Technological University, Singapore. MANA Research fellow, National Institute for Material Science (NIMS), International Canter for Materials Nanoarchitectonics (MANA), Japan. Research fellow, School of Materials Science and Engineering, Nanyang Technological University, Singapore. Materials R&D Engineer, NPO Multilayer Ceramic Capacitors (MLCC) product design division, Walsin Technology Corporation, Passive System Alliance (PSA), Taiwan. | | Honors and
Awards | Awarded "MSE Doctorate Research Excellence Award" for the class 2013 by School of Materials Science and Engineering, Nanyang Technological University. Awarded student travel grant from the 18th IEEE International Pulsed Power Conference. Awarded student travel grant from the 2010 IEEE International Power Modulator and High Voltage Conference. Awarded the consolation prize for the project "High Energy Capacitor for Pulsed Power Applications" at Discover Engineering, NTU, 2009. | E 103 ### Nanofiber for triboelectric nanogenerator #### Meng-Fang Lin* ### **Abstract** Triboelectric nanogenerator (TENG) is an energy harvesting device which can convert the dynamic mechanical energy into electricity by a conjunction of triboelectric effect and electrostatic induction. In this study, core-shell nanofibers of PDMS ion gel /PVDF-HFP were successfully prepared by incorporating cross-linking agent during electrospinning. The electrospun nanofiber mats were used to fabricate pressure sensors to detect the static and dynamic pressures by harnessing the capacitance changes and triboelectric effects judiciously. The core-shell PDMS ion gel/PVDF-HFP nanofiber sensor functions as a capacitive pressure sensor, which offers high sensitivity of 0.43 kPa⁻¹ in the low pressure ranges from 0.01 kPa to 1.5 kPa. The sensitivity, flexibility, and robustness of our capacitive pressure sensor allows it to be utilized as a wrist-based pulse wave detector for heart-rate monitoring. In addition, the core-shell PDMS ion gel/PVDF-HFP nanofiber mat made a good triboelectric based pressure sensor in the high pressure range with a linear pressure sensitivity 0.068 V kPa⁻¹ from 100 kPa to 700 kPa, one of the best reported at present. The increase in inductive charges and the enhanced dielectric capacitance of the core-shell nanofiber layer compared to the pure PVDF-HFP nanofiber layer allows it to function in the triboelectric nanogenerator (TENG) with the maximum power density reaching 0.9 W/m², which is sufficient to light up several hundred light emitting diodes (LEDs) instantaneously. Keywords: Triboelectric nanogenerator, Electrospun, Core-shell nanofiber, Tactile pressure sensor #### References [1] M.F. Lin, H Xiong, J Wang, K. Parida, P. S. Lee, *Nano Energy*, 44, 248 (2018) ## F. Fuel cells F_I01 # Prof. Naoki Wakiya Affiliation: Shizuoka University. Research Institute of Electronics **Position:** Professor Email: wakiya.naoki@shizuoka.ac.jp | | November, 1995: Ph. D (Tokyo Tech.) | |------------|--| | | March, 1991: Master degree (Tokyo Tech.) | | Education | March, 1989: Bachelor degree (Tokyo Tech.) | | | | | | | | | October, 2006: Professor of Shizuoka Univ. | | | October, 2005: Associate Professor of Shizuoka Univ. | | Experience | January, 1993: Assistant Professor of Tokyo Tech. | | | | | | | | | | | | June, 2020: Fellow of Ceramics Society of Japan | | | April, 2019: Research Fellow of Shizuoka Univ. | | Honors and | June, 2017: Awards for Academic Achievements in Ceramic Science and | | Awards | Technology (Ceramics Society of Japan) | | | May, 2000: Awards for advancements in ceramic science and technology | | | (Ceramics Society of Japan) | | | | ## In-situ observation of spontaneous phase separation via spinodal decomposition in Sr-excess SrTiO₃ thin film Naoki Wakiya^{1,2*}, Mayu Yoshida², Takahiko Kawaguchi², Naoniri Sakamoto^{1,2}, Kazuo Shinozaki^{1,3}, Hisao Suzuki¹ ^{1*} Research Institute of Electronics, Shizuoka University, Japan ² Graduate School of Integrated Science and Technology, Department of Engineering, Shizuoka University, Japan ³ School of Materials and Chemical Technology, Tokyo Institute of Technology, Japan *Corresponding Author: wakiya.naoki@shizuoka.ac.jp #### **Abstract** Though no spinodal decomposition (SD) is reported in Sr-Ti-O phase diagram, we have found that the SD to bring out spontaneous superlattice is observed in epitaxial SrTiO₃ (ST) thin film having Sr-excess composition. This SD is observed for thin film deposited using PLD under magnetic field application¹⁾. However, the dynamics of SD was not clarified yet. To clarify this, we developed new PLD in which an electromagnet and RHEED is attached. The purpose of this work is to examine the evolution of surface structure of Sr-excess ST thin film as in-situ observation. The thin film was deposited on ST(001) single crystal at 700°C under O₂ pressure of 1.0x10⁻⁴ torr under 1,200 G of magnetic field. The deposition under magnetic field was repeated with an interval. During the interval, magnetic field was not applied to avoid deflection of electron beam of RHEED. The RHEED observation was carried out during each the interval. Figure 1 shows RHEED images of ST thin film just after deposition and after aging for 3 min. The RHEED observation was carried out from two azimuth of ST[110] and [100]. This figure indicates that drastic change of RHEED pattern is observed. On the surface of ST thin film after aging, 30 nm-thick ST thin film was deposited and RHEED observation was carried out (Fig. 2). This figure depicts that the original RHEED pattern is observed. We repeated this cycle for 4 times, and found that the reproducibility is high. These results indicate that SD in epitaxial ST thin film occurs during deposition and aging. The driving force of the SD was considered to be excess energy at the surface of thin film by impingement of ions that are enhanced by application of magnetic field during deposition. Keywords: Spinodal decomposition, Epitaxial, Thin film, RHEED **References:** [1] N. Wakiya, et al., NPG Asia Mater., 8 (2016) e279. Fig. 1 RHEED images of ST thin film (a) (c) just after Fig. 2 RHEED images of ST thin film in the film formation deposition and (b) (d) after aging for 3 min process (a)(c) just after deposition of 30 nm-thick ST thin film (b) (d) just after aging ## Dr. Kuan-Ting Wu ### Affiliation: - a. International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University, Japan - b. Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Japan **Position**: Research Fellow Email: kt_wu@cstf.kyushu-u.ac.jp | Education | 2010 – 2014: PhD in Materials Science Department of Materials, Imperial College London, UK Supervised by Prof. Stephen Skinner and Prof. John Kilner <u>Thesis Title:</u> Layered Ruddlesden-Popper Lanthanum Nickelate Epitaxial Films Grown by Pulsed Laser Deposition for Potential Fuel Cell Applications 2002 – 2005: B.S. in Materials Science & Engineering | |------------|---| | Experience | Department of Materials Science & Engineering, Feng Chia University, Taiwan Appointed NEDO (New Energy and Industrial Technology Development Organization) researcher in Advanced Energy Conversion Systems Thrust at I²CNER: 2020 – present Research Fellowship in WPI-I²CNER (World Premier International Research Center Initiative - International Institute for Carbon-Neutral Energy Research): 2014 – present Postdoctoral Associate in the department of applied chemistry at Kyushu University: 2014 – present Graduate Teaching Assistant and Research Equipment Trainer (PLD & XRD) in Department of Materials, Imperial College London: 2010 – 2013 | | Experience | Material Engineer in Quo Pin Mechanical Engineering Co., Ltd: 2007 – 2009 Industrial collaborations with JFE Steel Corporation and Toshiba
Corporation for the development of reversible SOFC and SOEC International academic collaborations around UK (Imperial College London), Taiwan (INER and Taipei Tech.), and Switzerland (Paul Scherrer Institute) | | Honors and | |------------| | Awards | - Society of Chemical Industry: SCI Honours (2011 and 2012) - Cathay Life Insurance Co., Ltd -- Scholarship Award, 1st class (2004 and 2005) F 102 # The Role of Self-exsolved Heterogeneous Composite Nanoparticles towards Highly Active Fuel Electrode for CO₂/H₂O Co-electrolysis Kuan-Ting Wu^{1, 2*}, Tatsumi Ishihara^{1, 2} ^{1*} International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University, Japan ² Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Japan *Corresponding Author: kt_wu@cstf.kyushu-u.ac.jp #### **Abstract** Effective approaches to reduce, manage and even efficiently utilize CO_2 emission are desperately required to mitigate a rapid increasing concentration of effluent greenhouse gas emission. Solid oxide electrolysis cell (SOEC) is expected to be a highly efficient energy storage device, enabling effectively mitigating the increasing CO_2 concentration in the atmosphere, and even directly converting CO_2 into syngas, liquid fuel and hydrocarbon feedstocks through co-electrolysis of CO_2 - H_2O . For practical application, further improvement of fuel electrode in activity and stability are required to increase electrolysis performance. Recently exsolution of metal nanoparticles from perovskite oxide is considered as a promising method to *in-situ* generate active interfaces for electrochemical reactions during operation, through a phase decomposition process driven by reduction, working temperature, electrical polarization, etc. [1, 2] This provides a new dimension in designing highly efficient electrode for the application of solid oxide fuel cell and electrolyzer devices. More recently we have also reported exsolution phenomenon in another material system, spinel oxide, more specifically in $CuFe_2O_4$, which enables providing promising electrochemical performance and stability in steam and CO_2/H_2O co-electrolysis operations. [3, 4] In this study, an insight in the driving force regarding the evolution of Cu/Fe_3O_4 composite nanoparticles exsolved from the $CuFe_2O_4$ spinel oxide lattices will be investigated as operating in coelectrolysis with various gas compositions of CO_2/H_2O . Microstructural observation indicates that interesting 3-D growths of the exsolved composite nanoparticles were dynamically interacted with supplied CO_2/H_2O concentration after electrical polarization and thermal annealing processes. The corresponding chemical states and compositions of the $CuFe_2O_4$ electrode surface would be also discussed. In addition, a series of control group experiments using CuO, Fe_3O_4 and Cu-infiltrated Fe_3O_4 as the fuel electrodes were investigated for comparison. The results confirm that the unique Cu/Fe_3O_4 composite nanostructure exsolved from the $CuFe_2O_4$ spinel matrix plays a crucial role and is catalytically active in the operation. Long-term measurements operated at relatively low and high applied current density (or working voltage, 1.3 - 1.6 V) for 150 h in each operation confirm the excellent electrochemical stability with remarkably steady generation of total CO- H_2 syngas products. Finally, a novel spinel-perovskite composite, designed by mixing this unique $CuFe_2O_4$ having active self-exsolved nanostructures with $La(Sr)Fe(Mn)O_3$ perovskite, enabling a great enhancement in electrolysis current density will also be introduced. Keywords: Exsolution, Spinel, Perovskite, Solid oxide electrolysis cell, Co-electrolysis - [1] B. A. Rosen, *Electrochem*, 1, 32 (2020). - [2] J. T. S. Irvine et al., *Nature Energy*, 1, 15014 (2016). - [3] K.-T. Wu and T. Ishihara, Solid State Ionics, **329**, 46 (2019) - [4] K.-T. Wu, J. Matsuda, A. Takagaki and T. Ishihara, ECS Trans., 91, 2425 (2019). # Prof. Yen-Yu Chen ## Affiliation: Department of Cheimcial and Materials Engineering, Chinese Culture University, Taiwan **Position**: Assistant Professor Email: cyy15@ulive.pccu.edu.tw | Education | PhD in Materials Science and Engineering Department of Materials Science and Engineering, National Taiwan University, Taiwan | |----------------------|---| | | Master in Materials Science and Engineering Department of Materials Science and Engineering, National Taiwan University, Taiwan. | | | Bachelor in Science National Taiwan University, Taiwan | | Experience | Post Doctoral Fellow Department of Materials Science and Engineering, National Taiwan University, Taiwan Department of Materials Engineering, MingChi University, Taiwan | | | Research Principle Engieering Taiwan Semiconductor Manufacturing Company (TSMC), Taiwan. R&D Project Manager | | | Chung-Hsin Electric & Machinergy Mfg. Corp. (CHEM) Jemmytex International Corp., Taiwan | | | Visit Scholar (2002) Friedrich-Alexander University of Erlangen- Nuernberg, Germany | | Honors and
Awards | NSC-DAAD Scholarship (2002) Merit Award of Ph. D program, Taiwan Ceramic Society (2010) Honorable Mention, The Corrosion Engineering Association of ROC (2019) | # Microstructures and Electrical Properties of BaCeZrYYbO_{3-δ}/YSZ composites prepared by Solid-State Sintering for Sustainable Energy Application Yen-Yu Chen*, Pin-Lun Huang, Chia-Yu Liu, An-Chang Lin, Hsuan-Yun Lin, Chien-Ming Lei Department of Chemical and Materials Engineering, Chinese Culture University, Taiwan *Corresponding Author: cyy15@ulive.pccu.edu.tw #### **Abstract** High temperature ionic conductors are widely applied to sustainable energy fields, such as solid oxide fuel cell (SOFC) or protonic ceramic fuel cell (PCFC), solid oxide electrolysis cell (SOEC), watergas shifting reactors, etc. Among kinds of high temperature ionic conductive oxide materials, fluoritestructure oxygen-ion conducting oxides (ex. YSZ) and perovskite-structure proton conducting oxides (ex. BaZrO_{3-δ}) are the most popular and widely developed by manufacturers and researchers. In this study, BaCeZrYYbO₃₋₆ (BCZYYb)/YSZ composites were developed as a candidate of the electrolyte materials for the sustainable energy application. The composite of BCZYYb/YSZ were fabricated by a die-pressing process after solid-state reaction sintering. The samples were characterized, including the crystal phase of the as-prepared BCZYYb powders and composites by XRD method, the microstructures of composites by SEM, the densities of the composites by Archimedes' method, and the electrical properties by EIS and I-V methods. The results show the compact dual-phasic composites with BCZYYb and YSZ phases can be fabricated after sintered at 1500°C for 24h. The highest density of the composite is up to 99.98%T.D. The result of XRD shows that the composite is still consisted of a dual-phasic structure of BCZYYb and YSZ. The electrical analysis of the composites show an ionic conduction at high temperature. The conductivity of the dual-phase composites at 800°C is approximately 1.12x10⁻² S•cm⁻¹. The activation energy of conductivity is about 0.633 eV. **Keywords:** Composite, Microstructure, Electrical conductivity, Protonic ceramic fuel cell, Activation energy # **Prof. Francesco Ciucci** # Affiliation: The Hong Kong University of Science and Technology **Position**: Associate Professor Email: francesco.ciucci@ust.hk | Education | California Institute of Technology, PhD | |----------------------|---| | Experience | Associate Professor at the Hong Kong University of Science and Technology (since 2017) | | Honors and
Awards | Fellow of the Royal Society of Chemistry (2020) TIANHE Star Award from the National Supercomputer Center Guangzhou, China (2018) Teaching Excellence Appreciation Award, School of Engineering, HKUST (2014–15) | # **High Performance Protonic Ceramic Fuel Cells** ## Francesco Ciucci^{1,2*} ^{1*} Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China *Corresponding Author: francesco.ciucci@ust.hk ## **Abstract** Reversible protonic ceramic cells (RePCCs) are a promising energy storage and conversion device that can accelerate the global transition to renewable energy sources.[1] However, the commercialization of RePCCs is limited by several factors, including high cost, poor stability, and insufficient electrode activity towards fuel oxidization/generation and oxygen reduction/evolution reactions (ORR/OER).[2, 3] Herein, we introduce Sr_{0.9}Ce_{0.1}Fe_{0.8}Ni_{0.2}O_{3-δ} (SCFN) perovskite-based nanocomposite and Ni-Fe alloy support as RePCCs air and fuel electrode, respectively, to address these issues. First, for air electrode, we rationally design and develop a SCFN nanocomposite, composed of tetragonal and Ruddlesden-Popper perovskite with surface-enriched CeO2 and NiO nanoparticles. Experiments and calculations suggest that RP phase promote hydration and proton transfer, while NiO and CeO₂ nanoparticles facilitate O₂ surface exchange and O²⁻ transfer from surface to major perovskite phases. Hence, SCFN nanocomposite possesses high H⁺/O²⁻/e⁻ triple conduction, thereby contributing to good ORR/OER activity.[4] Second, for fuel electrode, we further introduce a Ni-Fe
metal-supporter, which possesses good mechanical strength and thermal compatibility with cermet-based electrodes/electrolytes, ensuring a facile cell fabrication and a robust durability. Calculations suggest that the interface of Ni-Fe support/fuel electrode and the diffusion of Fe towards the fuel electrode functional layer provide additional and more active sites for the hydrogen evolution reaction, further promoting H₂ production. The as-fabricated RePCCs at 700 °C achieved an excellent peak power density of 586 mW cm⁻² and an electrolysis current of -428 mA cm⁻² (at 1.3 V). Furthermore, the cell was exceptionally stable, as evidenced by 930 h of fuel cell operation with ultralow degradation (~0.78 % /kh) and much better than an analogous anode-supported cell (~17.78 %/kh).[4] In addition, the cell was stable during 50 h of reversible fuel cell/electrolysis cycling further proving the potential of this type of cell. These research works proposes a simple, new, highly active, and durable RePCC, thereby accelerating the commercialization possibilities of this technology. **Keywords:** Reversible protonic ceramic cells, Nanocomposite, Metal-supporter, Energy storage and conversion - [1] C. Duan, R. Kee, H. Zhu, N. Sullivan, L. Zhu, L. Bian, D. Jennings, R. O'Hayre, Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production, Nature Energy, 4 (2019) 230-240. - [2] C. Duan, J. Huang, N. Sullivan, R. O'Hayre, Proton-conducting oxides for energy conversion and storage, Applied Physics Reviews, 7 (2020) 011314. - [3] H.-I. Ji, J.-H. Lee, J.-W. Son, K.J. Yoon, S. Yang, B.-K. Kim, Protonic ceramic electrolysis cells for fuel production: a brief review, Journal of the Korean Ceramic Society, 57 (2020) 480-494. ² Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China Nov. 15 – Nov. 17, 2021, Taipei, Taiwan. [4] Y. Song, J. Liu, Y. Wang, D. Guan, A. Seong, M. Liang, M.J. Robson, X. Xiong, Z. Zhang, G. Kim, Nanocomposites: A New Opportunity for Developing Highly Active and Durable Bifunctional Air Electrodes for Reversible Protonic Ceramic Cells, Advanced Energy Materials, 11 (2021) 2101899. # H. High performance materials under extreme conditions ${\it H_101}$ # **Prof. Kungen TEII** **Affiliation**: Kyushu University **Position**: Associate Professor Email: teii@asem.kyushu-u.ac.jp | Education | March, 1992 Bachelor of Engineering: Department of Metallurgy and Materials Science, Faculty of Engineering, The University of Tokyo, Japan March, 1994 Master of Engineering: Department of Metallurgy and Materials Science, Graduate School of Engineering, The University of Tokyo, Japan March, 1998 Doctor of Engineering: Department of Metallurgy and Materials Science, | |----------------------|---| | | Graduate School of Engineering, The University of Tokyo, Japan | | Experience | April, 1998 – February, 2001 Postdoctoral Researcher: Venture Business Laboratory, Nagoya University, Japan March, 2001 – April, 2005 Assistant Professor: Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan May, 2006 – March, 2007 Visiting Researcher: Department of Engineering, University of Cambridge, United Kingdom May, 2005 - present Associate Professor: Department of Advanced Energy Science and Engineering (reorganized from Department of Applied Science for Electronics and Materials), Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan | | Honors and
Awards | Guest Editor, IEEE Transactions on Plasma Science, 2013 –2023 The Excellent Paper Presentation Award of Institute of Electrical Engineering of Japan, 1994 The Ishii Academic Encouragement Award, 1998 Research Activities Award of Kyushu University, 2011 –2013 | # Plasma Deposition of High-Quality Cubic Boron Nitride Films for Applications to Ultrahard Coatings and Electronic Devices Kungen Teii^{1*}, Jason H. C. Yang², Seiichiro Matsumoto^{1,3} ^{1*} Department of Advanced Energy Science and Engineering, Kyushu University, Japan, ² Department of Fiber and Composite Materials, Feng Chia University, Taiwan ³ Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science, Japan *Corresponding Author: teii@asem.kyushu-u.ac.jp #### **Abstract** There are a variety of polytypes of boron nitride such as hexagonal, turbostratic, and amorphous in sp^2 -bonded forms and cubic and wurtzite in sp^3 -bonded forms, with similarities to carbon. Cubic boron nitride (c-BN) has a number of highly attractive properties comparable to diamond such as high hardness, large band gap, and high thermal conductivity. Among the potential advantages of c-BN over diamond is that it is chemically inert against ferrous materials and resistant to oxidation even at high temperatures up to ~1000 $\mathbb C$, and thus suitable for cutting iron-containing materials and semiconductors for power electronics in high temperature condition. c-BN can be deposited in form of films from vapor phase by various techniques such as plasmaenhanced chemical vapor deposition (CVD) and sputtering. All these techniques usually require strong ion bombardment with kinetic energies above 50 eV for c-BN formation. The strong ion impact inevitably results in low film quality and poor adhesion to the substrate. Thus, the deposition technique of high-quality c-BN films is highly desired for industrial applications. In our previous study, high-quality c-BN films were deposited under low-energy ion bombardment (<40 eV) by plasma CVD using the chemistry of fluorine [1]. The mean ion energy for c-BN formation was reduced greatly, then the resulting films consisted of micron-sized grains with crystallographic morphology. In the present talk, firstly, the deposition mechanism of our c-BN films is explained in terms of ion impact and the chemistry of fluorine. Secondly, recent trial results of applications to ultrahard coatings and electronic devices are presented [2-4]. Keywords: Plasma CVD, Fluorine, Ion Energy, Semiconductor, Functional Coating - [1] K. Teii, R. Yamao, T. Yamamura, S. Matsumoto, J. Appl. Phys., 101, 033301 (2007). - [2] K. Teii, S. Matsumoto, ACS Appl. Mater. Interfaces, 3, 5249 (2012). - [3] K. Teii, S. Kawamoto, S. Fukui, S. Matsumoto, J. Appl. Phys., 123, 145701 (2018). - [4] J. H. C. Yang, K. Teii, C.-C. Chang, S. Matsumoto, M. Rafailovich, *Adv. Funct. Mater.*, 31, 2005066 (2021). # **Prof. Masahiro Yoshimura** # Affiliation: NCKU90and Beyond, Hi-GEM,PCGMR,Dept of Mater.,Sci. and Eng., National Cheng Kung University,Tainan,Taiwan Position: Distinguished Visiting Chair Professor Email: yoshimur@ncku.edu.tw ## Affiliation: Tokyo Institute of Technology, Japan, **Position**:Emeritus Professor Email: masahiroyoshimura75@gmail.com | | Tokyo Institute of Technology, school of engineering, B.S (1961-1965) | |------------|--| | Education | Tokyo Institute of Technology, school of engineering, M.S (1965-1967) | | | Tokyo Institute of Technology, school of engineering, PhD (1967-1970) | | | Tokyo Institute of Technology, Research Associate (1970-1978) | | | CNRS Lab, France, Visiting Researcher (1973-1975) | | | Mass. Inst. Tech, USA, Researcher Associate (1975-1977) | | | Tokyo Institute of Technology, Associate Professor (1978-1985) | | Experience | Tokyo Institute of Technology, Professor (1985-2008) | | | Tohoku University, Visiting Professor (2008-2009) | | | ETH,Univ.of Limrik,CAS,Univ. Washington,Visiting Prof.(2009) | | | National Cheng Kung University, Visiting Chair Professor (2010-) | | | Ewha Univ., Korea, Univ. Newcastle, Austraria Adjunct Prof. (2018) | | | 2002 The G. C. Kuczynski Prize (Group member), IISS, Yugoslavia | | | 2003 Honorary Member, Materials Research Society of India | | Honors and | 2004 Thomson, ISI Highly Cited Researchers (in Materials Science) | | Awards | 2007 Research Award, Ministry of Education, Culture & Science, Japan | | | • 2008 Lee Hsun Award, Institute of Metal Research, CAS, Shenyang, China | | | | - 2013 3rd ISHA Lifetime Achievement Award, International Solvothermal and Hydrothermal Association, Austin, Texas, USA - 2017 Honorary Fellow, European Ceramic Soc. One of 8 first elected in 2017 - 2017 Distinguished Life-Member Award, American Ceramic Soc. One of 156 since 1931, 11th in Asia, 10th in Japan - 2019 Marquis Who's Who 2019 Award # Continuous(Successive) Fabrication of Nano-Structured Ceramic Materials via Soft, Solution Processing without Firing #### Masahiro Yoshimura NCKU90and Beyond, Hi-GEM,PCGMR,Dept of Mater.,Sci. and Eng., National Cheng Kung University,Tainan,Taiwan :yoshimur@ncku.edu.tw Tokyo Institute of Technology, Japan : masahiroyoshimura75@gmail.com ### **Abstract** Practical devices would be better to be fabricated via continuous and/or successive Processes. Presently, however, they have generally been fabricated artificially and/or industrially
by so-called high-technology, where high temperature, high pressure, vacuum, molecule, atom, ion, plasma, etc. using expensive equipments thus they consumed huge amount of resources and energies thus exhausted huge amounts of wastes: materials, heats and entropy. The major reasons might be 1) The reactants should be nano-sized species, 2) high-energy reaction might be required, thus 3) They cost economically and environmentally. To save this tragedy, a) we must consider "Cascade use of Heats", and b) "Low energy Production of advanced materials via solution-based technologies." c) Continuous (Successive) Fabrication will be possible in solution process(es). Now, however, 3D-Printing with additive designed Powders have widely been studied, however, they are multistep butch systems with firing(s). We proposed in 1995 an innovative concept and technology, "Soft Processing" or "Soft, Solution Processing," which aims low energetic (=environmentally friendly) fabrication of shaped, sized, located, and oriented inorganic materials in/from solutions. When we have activated/stimulated interfacial reactions locally and/or moved the reaction point dynamically, we can get patterned ceramic films directly in solution without any vacuum, firing, masking nor etching. Direct Patterning of CdS, PbS and CaWO4 on papers by Ink-Jet Reaction method, furthermore, we have succeeded to fabricate BaTiO3 patterns on Ti by a laser beam scanning and carbon patterns on Si by plasma using a needle electrode scanning directly in solutions. Successes in TiO2 and CeO2 patterns by Ink-Jet Deposition, where nano-particles are nucleated and grown successively on the surface of substrate thus become dense even below 300 C could be prepared. Nano-structured films will be also talked 1-3). Keywords: Continuous, Nano-structured, Cceramics, Solution processing - [1] MRS Bulletin,25[9], Sept. issue 2000, special issue for Soft Processing of Advanced Inorganic Materials, Guest Editor: M. Yoshimura and J. Livage. - [2] Yoshimura, M., J. Mater. Sci.,41 [5],1299-1306 (2006), - [3] Yoshimura, M., Procedia Engineering, 171, 40-52 (2017) L. LED L_I01 # **Dr. Sakthivel Gandhi** **Affiliation**: SASTRA University **Position**: Assistant Professor – Research Email: | Education | M.Sc., Applied Chemistry Ph.D., Materials Chemistry (Mesoporous Materials) | |----------------------|--| | Experience | Assistant Professor at SASTRA University, Tamil Nadu, India from December 2012 to January 2013 Post-doctoral Researcher at Changwon National University, Republic of Korea from January 2013 to December 2015 Assistant Professor at SASTRA University, Tamil Nadu, India from January 2016 to to-date | | Honors and
Awards | Received best dissertation award in the year 2012 from SASTRA University | # Nanoporous Silica Materials: A Versatile Supporting Material for the Development of 'Phosphor in Glass Abinaya Mayavan¹, Sakthivel Gandhi^{1,2,3}* #### Abstract Phosphor converted warm white LEDs draw a lot of attention due to its notable advantages including power consumption, compactness & environmentally benign nature and thus of more commercial value. The great challenge associated with the improvisation in performance of warm white LEDs can be achieved by protecting the phosphor from thermal and environmental effect. Our work concentrates on this aspect using an efficient nanoporous silica material. The silicate-based phosphor M_2SiO_4 :Eu²⁺ (M = Ca/Ba/Sr) is developed by using nanoporous silica materials as silica precursors. The results confirmed the interesting features such as, good thermal stability of output colour, the shifting of emission wavelengths under the wide range of excitation from violet to deep blue (300 – 450 nm), mechanical stability, and so on. Although, the XRD patterns revealed the similar crystallinity for nanoporous assisted phosphors as well as conventionally developed phosphors, there was a significant difference in the morphology and luminescence behavior. In addition, the CIE color coordinates (on planckian locus), CCT (< 4000 K) & CRI (> 80) obtained for the nanoporous silica assisted $M_2SiO_4:Eu^{2+}$ confirm that these nanoporous silica material can play a pivotal role in the demerits rectification of the commercial yellow phosphor, YAG:Ce. Keywords: Nanoporous silica, Remote Phosphor, Phosphor in Glass, Solid-State Synthesis ¹Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India ²Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India ³Centre for Energy Storage & Conversion, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India ^{*}Corresponding and presenting author M. Materials and technologies for a low carbon, sustainable society $\rm M_I01$ # **Prof. Shan-Tao Zhang** **Affiliation**: Nanjing University **Position**: Professor Email: stzhang@nju.edu.cn | Education | 1993/9-1997/6, Department of Physics, Nankai University, B.S. 1997/9-2003/6, Department of Materials Science and Engineering, Nanjing University, Ph.D | |----------------------|---| | Experience | 2006/6-2007/8, Institute of Materials Science, Technical University Darmstadt, Germany, Research Fellow of Alexander von Humboldt Foundation 2010/1-2010/4, Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, Research Associate | | Honors and
Awards | | # Ferroelectric and pyroelectric property in antiferroelectric-based composites Shan-Tao Zhang* National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing, China, *Corresponding Author: stzhang@nju.edu.cn #### Abstract Pyroelectric materials have huge market in daily life applications and high pyroelectric performances near room temperature are highly desired. Here we report the room temperature (RT) ferroelectrics and near RT high pyroelectric performance in antiferroelectric based composite. For (1-x)Pb_{0.99}Nb_{0.02}[(Zr_{0.57}Sn_{0.43})_{0.937}Ti_{0.063}]_{0.98}O₃-xZnO [(1-x)PNZST-xZnO] composite, robust RT ferroelectric and peak pyroelectric coefficient of 1053.9 × 10⁻⁴ C·m⁻²·K⁻¹, figure of merits of F_v = 1249.4 × 10⁻² m²·C⁻¹, F_d = 876.3 × 10⁻⁵ Pa^{-1/2}, F_i = 832.7 × 10⁻¹⁰ m·V⁻¹ around 39°C was observed in the x = 0.1 composite. The RT ferroelectric state is realized and stabilized due to ZnO-induced internal strain. The thermal-driven ferroelectric to antiferroelectric transition generates high pyroelectric performance. This work may provide some information for designing high performance ferroelectric/pyroelectric materials. **Keywords:** Antiferroelectric composite, ferroelectric, pyroelectric - [1] L. Li, et al., J. Mater. Chem. C, 8, 7820 (2020). - [2] Z. Fan, et al., J. Am. Ceram. Soc., (in revision). # **Prof. Nobuhiro MATSUSHITA** **Affiliation**: Tokyo Institute of Technology **Position**: Professor, Dept of Mater. Sci and Eng., Senior Advisor to the President Email: matsushita.n.ab@m.titech.ac.jp | | 1 | | | | | | |------------|-----------------------------|--|--|--|--|--| | | Mar. 1990 | Dept. of Elect. Eng., Waseda Univ. | | | | | | Education | Nov. 1998 | Doctor of Eng. from Tokyo Tech., Doctoral dissertation by submitting | | | | | | | | the thesis | | | | | | | ● Apr. 1990 | Technical Officer, Dept. of Elect. Eng., Faculty of Eng., Tokyo Tech. | | | | | | | Oct. 1992 | Research Associate, | | | | | | | | Dept. of Elect. Eng., Faculty of Eng., Tokyo Tech. | | | | | | | • Apr.1998-M | ar.1999 Visiting Researcher, Dept. of Elect. and Comp. Eng., Univ. of Minnesota, USA | | | | | | | • Apr. 2000 | Assistant Professor, Dept. of Physical Electronics, Graduate School of Science and Engineering, Tokyo Tech | | | | | | Experience | • Mar. 2005 | Associate Professor, Materials and Structures Laboratory, Tokyo Tech. | | | | | | · | • Oct.2006-Se | | | | | | | | | JAPAN | | | | | | | • June. 2015 | Associate Professor, Dept. of Mater. Sci. and Chem., Grad. School of | | | | | | | | Sci. and Eng., Tokyo Tech. | | | | | | | Apr. 2018 | Professor, Dept. of Mater. Sci. and Eng., School of Mater. and Chem. | | | | | | | | Tech., Tokyo Tech. | | | | | | | Dec. 2019 | Senior Advisor to the President, Tokyo Tech. (to present) | | | | | | | • Mar. 1997 | Encouragement Award, The Surface Finishing Society of Japan | | | | | | | Aug. 1997 | Young Researcher Award, International Union on Materials Research | | | | | | | | Society | | | | | | | Sep. 2000 | Best Paper Award and Young Researcher Award, | | | | | | Honors and | | The 8th International Conference on Ferrite | | | | | | | Nov. 2001 | Best Presentation Award, The Magnetics Society of Japan | | | | | | Awards | Mar. 2004 | Invention Medal, Teshima Memorial Award (Tokyo Tech.) | | | | | | | Apr. 2005 | The Commendation for Science and Technology by the MEXT, | | | | | | | | Research Category | | | | | | | • Feb. 2006
| Research Award, | | | | | | | | Materials and Structures Laboratory, Tokyo Tech. | | | | | # "Spin-Spray Method": A Novel Solution Process for Preparing Semiconductor Oxide Films with Low Environmental Load Ryosuke Nitta¹, Yuta Kubota¹, Lin Hwai En², Masahiro Yoshimura³, Nobuhiro Matsushita^{1*} ^{1*} Department of Materials Science and Engineering, Tokyo Institute of Technology, Japan, ² Department of Mechanical Engineering, National Taipei University of Technology, Taiwan ³ Distinguished (Visiting)Chair Professor, National Cheng Kung University, Taiwan *Corresponding Author: matsushita.n.ab@m.titech.ac.jp ### **Abstract** In this study, spin-spray method enabled to prepare semiconductor oxide films of ZnO, CuO and C_2O at the temperature below $100^{\circ}C$ through whole processes, and they were applied for the transparent conductive oxide material, humidity- and bending-sensors. ZnO film with transparency was deposited by the spin-spray method at 90°C. The film resistivity decreased by three orders of magnitude, to $4.43\times10^{-2}~\Omega$ cm, by Ultraviolet (UV) light irradiation for 60 min. TOF-SIMS depth profile and ^1H solid-state NMR spectroscopy analysis revealed that the asdeposited ZnO film before UV treatment contained a large amount of trapped water, and hydrogen donors including interstitial hydrogen in bond-centered sites (H_i) , substitutional hydrogen on the oxygen lattice site (H_0) and three O–H bonds in a zinc vacancy $(V_{Zn}-H_3)$, were generated in the ZnO film after the treatment. UV irradiation of photocatalytic ZnO decomposed the trapped water to form H^+ and OH^- ions, which associated with the oxygen and zinc vacancies, resulting in the formation of thermodynamically stable hydrogen donors. CuO nanosheet arrays were fabricated on flexible polyethylene terephthalate (PET) substrates via the spin-spray method. The surface nanostructures adhered strongly to the PET substrate were sufficiently flexible to be used as humidity sensors in a bent state. The CuO nanosheet arrays had excellent humidity-sensing performance as evidenced by the linear resistance behavior with high sensitivity up to 170% as well as short response and recovery times of 2.1 s and 2.8 s, respectively. This humidity sensor based on the nanosheets also exhibited excellent stability and durability against mechanical bending. Their sensitivity and response and recovery times were almost unchanged even after bending-relaxation cycles of 1000 times. Cu₂O film was prepared on flexible PET substrate for a bending sensor via the spin spray method. The Cu₂O bending sensor responded to a wide range of bending with curvatures between 0 and 0.21 mm⁻¹. The curve of the resistance variation in the perpendicular bending versus curvature can be divided into two linear parts, which are region I (0 < κ < 0.05 mm⁻¹) and II (0.05 < κ < 0.2 mm⁻¹) with the gauge factor (GF) of 5.88 and 18.2, respectively. The bending sensor responded to very small curvature changes, demonstrating the high-resolution bending performance. Besides, the sensor had fast response time (~ 272 ms) between curvatures of 0.153 and 0.156 mm⁻¹. All the results demonstrated that the flexible bending sensor based on the Cu₂O film had a great potential as high-performance wearable electronic devices for health-care monitoring^[2]. **Keywords:** Low environmental load, Process temperature below 100°C, Iron oxide films, Zinc oxide films, Cupper oxide films - [1] H. Wagata, N. Matsushita et al.; J. Mater. Chem., 22, pp. 20706–20712 (2012). - [2] Sun, S. et al.; Prog. Mater. Sci., 96, 111–173 (2018). # P. Photovoltaic / Solar power P_I01 # **Dr. Ngoc Duy Pham** **Affiliation**: Macquarie University Position: Postdoctoral research fellow Email: ngocduy.pham@mq.edu.au | Education | PhD in Photovoltaics, Queensland University of Technology | |----------------------|--| | Experience | Dr. Ngoc Duy Pham completed his PhD in Photovoltaics at Queensland University of Technology in Oct. 2019 and worked in the same institute as a Research Associate till Sep. 2020. He joined Macquarie University Sep. 2020 as a postdoctoral research fellow. His research has focused on development of efficient and stable metal halide perovskite-based third-generation photovoltaics. More recently, he has started working with colleagues at Macquarie University to develop highly efficient multijunction solar cells based on metal halide perovskites. | | Honors and
Awards | High-degree-research High-achievement Award (Queensland University of Technology) ACS Applied Energy Materials Best Poster Award (IPS-22) QUT Postgraduate Research Award (Queensland University of Technology) | # Novel p-dopant for Spiro-OMeTAD-based Hole-Transporting Materials towards Efficient and Stable Perovskite Solar Cells Ngoc Duy Pham^{1*}, Shujuan Huang¹, Weijian Chen², Hongxia Wang³, Baohua Jia⁴, and Xiaoming Wen⁴ 1* School of Engineering, Macquarie University, Australia 2 School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Australia 3 School of Chemistry and Physics; Queensland University of Technology, Australia 4 Centre for Translational Atomaterials, Swinburne University of Technology, Australia *Corresponding Author: ngocduy.pham@mq.edu.au #### **Abstract** Perovskite solar cell (PSC) is an emerging photovoltaic technology which offers prospects for efficient energy harvesting from sunlight and cost-effective device fabrication. This technology has demonstrated rapid progress in the last ten years reaching a power conversion efficiency of over 25%, on par with silicon cells. Today, most efficient PSCs are made based on Lithium 2,2',7,7'-Tetrakis[N,N-di(4bis(trifluoromethanesulfonyl)imide (Li-TFSI)-doped methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD)-based hole-transporting material.^{2, 3} However, the rapid aggregation and hydration of Li-TFSI upon moisture exposure has been linked to the instability of PSCs. 4,5 Here we show that this issue can be tackled by replacing the Li-TFSI with the more hydrophobic alkaline-earth bis(trifluoromethanesulfonyl)imide additives (AEBAs), namely Mg-TFSI₂ and Ca-TFSI₂ owing to the formation of more robust coordination complexes between the TFSIsalts and 4-tert-Butylpyridine. Intriguingly, the presence of AEBAs also improve hole mobilities in Spiro-OMeTAD and energy alignment with adjacent perovskite layer, which ultimately contribute to the favorable carrier extraction at the perovskite/Spiro-OMeTAD interface. Consequently, our PSCs stabilized by the AEBAs yield a champion efficiency of 20.04%, increased from 18.08% for PSCs made with Li-TFSI, while device stability is significantly enhanced.^{6,7} **Keywords:** Perovskite solar cell, Alkaline-earth bis(trifluoromethanesulfonyl)imide, High-efficiency, Stability. - [1] H.J. Snaith. *The Journal of Physical Chemistry Letters*, **2013**, 4, 3623-3630. - [2] J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim. *Nature*, **2021**, *592*, 381-385. - [3] J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C.S. Moon, N.J. Jeon, J.-P. Correa-Baena, V. Bulović, S.S. Shin, M.G. Bawendi, J. Seo. *Nature*, **2021**, *590*, 587-593. - [4] S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng. *Nano Letters*, **2016**, *16*, 5594-5600. - [5] Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, Y. Qi. *Chemistry of Materials*, **2015**, *27*, 562-569. - [6] N.D. Pham, J. Shang, Y. Yang, M.T. Hoang, V.T. Tiong, X. Wang, L. Fan, P. Chen, L. Kou, L. Wang, H. Wang. *Nano Energy*, **2020**, *69*, 104412. - [7] W. Chen, N.D. Pham, H. Wang, B. Jia, X. Wen. *ACS Applied Materials & Interfaces*, **2021**, *13*, 5752-5761. # **Dr. Al Jumlat Ahmed** ## Affiliation: Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Australia **Position**: Research Assistant Email: ajahmed@uow.edu.au | Education | PhD in Material Engineering, University of Wollongong, Australia. Master of Technology in Green Energy Technology, Pondicherry University, India Bachelor of Science in Electrical and Electronic Engineering, United International University, Bangladesh | |----------------------|--| | Experience | Research Assistant, Australian Research Council (ARC), DECRA Project, University of Wollongong, Australia, 2020-21 Assistant Professor, Department of Electrical and Electronic Engineering, Khwaja Yunus Ali University, Bangladesh, 2015-17 Lecturer, Department of Electrical and Electronic Engineering, United International University, Bangladesh, 2014-15 Research Engineer, Centre
for Energy Research, United International University, Bangladesh, 2013-15 | | Honors and
Awards | Endeavour Postgraduate Scholarship by Australian Government, 2017-20 ISEM, UOW Postgraduate Merit Award, 2019 Pondicherry University Gold Medal for Outstanding Academic Performance, 2013 Indian Institute of Technology Bombay Research Internship Award, 2012-13 South Asia Foundation (SAF) Fellowship, 2011-13 | # Thermoelectric Performance of Nano-engineered Perovskite Oxide Materials: Sr_{1-x}La_xTiO₃ and Ba_{1-x}La_xTiO₃ ## Al Jumlat Ahmed1* ^{1*}Institute for Superconducting and Electronic Materials, University of Wollongong, Australia, *Corresponding Author: ajahmed@uow.edu.au ## **Abstract** SrTiO $_3$ and BaTiO $_3$ are promising thermoelectric materials specially for high temperature application. Intrinsically, these materials have very low electrical conductivity and high thermal conductivity. The electron doping in the materials was optimized by adding La in different atomic percentage and they were become n-type semiconducting material. Nanoscale pores were introduced into the bulk samples for further improvement of thermoelectric performance of Sr_{1-x}La_xTiO₃ and Ba_{1-x}La_xTiO₃[1]. The powder samples with nanoscale pores were synthesized using the polymeric micelles self-assembly method. The commercially available Pluronic F127 surfactant was used as soft template for nano scale pores formation. Then the powder samples were rapidly solidified using the spark plasma sintering (SPS) technique to prepare bulk samples with nanostructured pores. The sintering conditions such as sintering temperature, pressure, holding time, heating and cooling rate were optimized to fabricate highly dense nano crystalline bulk samples[2]. The X-ray diffraction (XRD) peaks shifting and reduction in lattice parameter confirmed that A site of ABO₃ crystal system of SrTiO₃ and BaTiO₃ were substituted by La atoms. Atomic resolution scanning transmission electron microscopy (STEM) images and energy dispersive X-ray spectrometry (EDS) results also showed that La was doped successfully into the lattice. The electrical conductivity of metal oxide materials was improved due to La doping and their showed *n*-type semiconducting behaviour. The Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy images and transmission electron microscopy (TEM) images revealed that the samples synthesized using the surfactant F127 have nanostructured pores. There was a large reduction in the lattice thermal conductivity in the F127-treated samples arises primarily from the nanoscale pores distribution which introduces anisotropic phonon scattering within the unique nanoarchitecture[3, 4]. It was also observed that the nanoscale pores in the samples significantly improved the Seebeck coefficient (thermopower). The change in phonon charge-carrier interaction and charge-carrier mobility may be responsible for improvement in the thermopower due to nano pores. Therefore, there was remarkable enhancement in the power factor and the figure of merit (*zT*) of La doped SrTiO₃ and BaTiO₃ samples with nanoscale pores. Keywords: Perovskite Oxide, Nanoscale pores, Lattice thermal conductivity, Thermoelectric - [1] A. J. Ahmed *et al.*, "Enhancement of thermoelectric properties of La-doped SrTiO3 bulk by introducing nanoscale porosity," *Royal Society Open Science*, vol. 6, no. 10, p. 190870. - [2] A. J. Ahmed, "Development of Nano-engineered Perovskite-based Thermoelectric Material for Waste Heat Recovery," *Doctor of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong,* 2021. - [3] A. J. Ahmed *et al.*, "Significant Improvement in Electrical Conductivity and Figure-of-merit of Nanoarchitectured Porous SrTiO3 by La Doping Optimization," *ACS Applied Materials & Interfaces*, 2020/05/19 2020. - [4] A. J. Ahmed *et al.*, "Significant Reduction in Thermal Conductivity and Improved Thermopower of Electron-Doped Ba1–xLaxTiO3 with Nanostructured Rectangular Pores," *Advanced Electronic Materials*, https://doi.org/10.1002/aelm.202001044 vol. 7, no. 4, p. 2001044, 2021/04/01 2021. # **Prof Hongxia Wang** # Affiliation: School of Chemistry and Physics, Queensland University of Technology, Australia **Position:** Professor Email: hx.wang@qut.edu.au | Education | 2002- 2005 PhD. of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, China 1999- 2002 M.E. of Applied Chemistry, Central South University, China | | | | | |----------------------|---|--|--|--|--| | | 1995-1999 B.E of Analytical Chemistry, Central South University of
Technology, China | | | | | | Experience | After completing my PhD, I undertook research as postdoc fellow in several institutions in Japan, Australia and UK before I joined Queensland University of Technology in 2010 starting as Vice-Chancellor senior research fellow. I was promoted to full professor in 2019 in the same university. | | | | | | | Royal Society of Chemistry Highly Cited Author, 2020 | | | | | | | Australian Research Council (ARC) College of Expert (2019-2022) | | | | | | Honors and
Awards | Solar Energy Journal Best Paper Award for 2016" in the topic of
Photovoltaics | | | | | | | Australian Research Council (ARC) Future Fellowship, 2012 | | | | | | | Australian Research Council Australian Postdoc Fellow (industry), 2007 | | | | | P 103 # Towards Cost-Effective, Stable and Greener Perovskite based Solar Cells and Light Emitting Diode Hongxia Wang School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia QLD 4001 *Corresponding Author: hx.wang@qut.edu.au ## **Abstract** The past ten years have witnessed the skyrocketing progress of optoelectrical devices that use metal halides perovskite as key functional materials such as light absorber in solar cells and photoemitter in light emitting diodes (LEDs) etc. Within ten years, the energy conversion efficiency of perovskite solar cells (PSC) have increased from the initial 3.8% to current record efficiency over 25% achieved by solution processing. Meanwhile, perovskite based LEDs also has showed EQE above 23%. These breakthroughs have made perovskite based technologies potentially very competitive in the future market. Nevertheless, currently critical issues such as unsatisfactory stability, toxicity of materials as well as use of precious metal in the state-of-art high efficiency perovskite solar cells (PSCs) are obstacles that need to be overcome urgently in order to make the perovskite based technologies commercially attractive. In my talk, I will present our recent study of using dopants to tune and improve physicochemical properties of perovskite films and hole transport materials to enhance the stability and performance of PSCs. I will also show our strategies to enhance stability of PSCs while reducing material costs by using carbon materials. Finally I will discuss the issue related with using hazardous solvents in perovskite production and the strategy of using green solvent system for synthesis of perovskite films and nanocrystals for applications in solar cells and LEDs. # Oral Speaker | Paper ID | Corresponding All Authors | | Title | Institution | Department | |----------|---|---|---|--|---| | B_001 | Debabrata
Mohanty | Debabrata
Mohanty, Shu-
Yu Chen, I-Ming
Hung | Effect of different LiTFSI content
on Composite Solid Electrolyte
with NASICON-type LATP and
PVDF—HFP for Solid-State
Lithium-ion Batteries | Yuan Ze
University | Department of
chemical
engineering
and materials
science | | B_O02 | Jeng-Kuei Chang | Rahmandhika
Firdauzha Hary
Hernandha,
Purna Chandra
Rath, Bharath
Umesh,
Jagabandhu
Patra, Jeng-Kuei
Chang | SiOxCarbon Multilayer Coating
on Silicon Nanoparticles
Synthesized via Supercritical CO ₂
Fluid for Li-ion Battery Anodes | National Yang
Ming Chiao
Tung University | Department of
Materials
Science and
Engineering | | B_O03 | Cheng-Chia Chen | Cheng-Chia Chen, Sutarsis, Discharge for Porous Carbon | | Nation Yang
Ming Chiao
Tung University | Material
Science and
Engineering | | B_O04 | Alex Chinghuan Lee Alex Chinghuan Lee Chen, Kaviarasan Govindarajan | | Structure evolution and operando analysis methods of fast-charging lithium titanate materials developed in HiGEM research center | National Cheng
Kung University | Hierarchical
Green-energy
Materials (Hi-
GEM) Research
Center | | B_O05 | Tzu Husan Chiang | Yu-Si Chen, Tzu
Husan Chiang | Fe-Cu-Schiff base complexes as
Electrocatalysts for Zn-Air
Batteries | National United
University | Materials and
Chemical
Engineering | | B_O06 | Ngoc Thanh Thuy Ngoc Thanh
Tran Thuy Tran | | Insight into the degradation mechanism of the Ni-rich NMC cathode materials | National Cheng
Kung University | Hierarchical
Green Energy
Materials (Hi-
GEM) Research
Center | | E_001 | Hsin-Yi Tiffany Yi-Ting Lu, Chi-
Chen Chang Hu, Hsin-
Electro | | A DFT Study of the Effect of
Degrees of Inversion on the
Electronic Structure of Spinel
NiCo ₂ O ₄ | National Tsing | Department of
Engineering
and System
Science | | E_O02 | Ying-Hao Chu | Pao-Wen Shao, Heng-Jui Liu, Yuanwei Sun, Mei Wu, Ren-Ci Peng, Meng Wang, Fei Xue, Xiaoxing Cheng, Lei Su, Hsiao- Wen Chen, Meng-Chin Lin, Qian Zhuang, Jiawei Huang, Yachin Ivry, | Flexo-phototronic Effect in
Centro-symmetric BiVO ₄
Epitaxial Films | National Yang
Ming Chiao
Tung University | Materials
Science and
engineering | | | | Hsiang-Lin Liu, Yu-Jung Lu, Shi Liu, Pu Yu, Long-Qing Chen, Peng Gao, Xiaoqing Pan, Yung-Jung Hsu, Jyh-Ming Wu, Yi-Chun Chen, and Ying- | | | | |-------|---------------------|---|--|---|--| | E_003 | Feng-Sheng Chao | Feng-Sheng
Chao, Chin-Yi
Chen | Supercapacitive Properties of Bi-
doped ZnCo ₂ O ₄ Nanostructure
Synthesized by In-situ
Hydrothermal Method | Feng-Chia
university | material
science and
engineering | | E_004 | Deng-Li Ko | Deng-Li Ko,
Ying-Hao Chu | High-stability transparent flexible energy storage based on PbZrO ₃ / muscovite heterostructure | National Yang
Ming Chiao
Tung University | Department of
Materials
Science and
Engineering | | F_001 | Azam Khan | Azam Khan, Yi-
Hung Wang,
and I-Ming
Hung | Study of BaCO ₃ and Samarium-
doped Ceria Carbonate
Composite Electrolyte for Low-
Temperature Solid Oxide Fuel
Cells | Yuan Ze
University | Department of
chemical
engineering
and materials
science | | F_002 | Liangdong Fan | Zenghui Wang,
Liang Dong Fan | High-performance in-situ Ni
nanoparticle exsolved
LSTN/LNSDC composites for
low-temperature solid oxide
fuel cells | Shenzhen
University | College of
Chemistry and
Environmental
Engineering | | L_001 | Pei-Tzu Cheng | Pei-Tzu Cheng,
Chen-Yu Wu,
Horng-Yi Chang | Optical Properties of Europium doped Calcium Sulfide Prepared by Carbon | National Taiwan
Ocean
University | Marine
Engineering | | L_002 | Henni Setia Ningsih | Henni Setia
Ningsih, Huang-
Yu Hsuan and
Shao-Ju Shih | Synthesis and characterization of Tb-doped Y4SiAlO8N powder by spray pyrolysis | National Taiwan University of Science and Technology | Department of
Materials
Science and
Engineering | | M_001 | Yu-Lin Kuo | Chia-Wei
Huang, Yu-Lin
Kuo, Henok
Atile Kibret,
Yao-Hsuan
Tseng | Chemical Looping Gasification of Spent Coffee Ground Using Iron ore as Oxygen Carrier | National Taiwan
University of
Science and
Technology | Department of
Mechanical
Engineering | | M_002 | Asit Kumar Panda | Asit Kumar
Panda, Ren-Jei
Chung | A Non-
Enzymatic/Biocompatible
Electrochemical Sensor based
on N-doped Graphene Quantum
Dot-incorporated SnS ₂
Nanosheets for In Situ
Monitoring of Hydrogen
Peroxide in Breast Cancer Cells | National taipei
university of
technology | department of
chemical
engineering
and
biotechnology | | M_003 | Lien-Hui Kan | Lien-Hui Kan,
Chen-Yu Wu,
Horng-Yi Chang | Investigation on Luminescent
Layer of Alkaline-earth
Aluminates on Aluminum Alloy | National Taiwan
Ocean
University | Department of
Marine
Engineering | | P_001 | Akira Yamakata | Chia-Yu Chang,
Kosaku Kato, | Development of Visible Light
Responsive TiO ₂ | _ | Materials
Science and | Nov. 15 – Nov. 17, 2021, Taipei, Taiwan. | Akira Yamakata, | Photoelectrodes | by | Metal | University | Engineering | |-----------------|--------------------|----|-------|------------|-------------| | Wenjea J. Tseng | Nanoparticle Loadi | ng | | | | B. Battery and energy storage B_001 # Effect of different LiTFSI content on Composite Solid Electrolyte with NASICON-type LATP and PVDF—HFP for Solid-State Lithium-ion Batteries_ Debabrata Mohanty^{1, *}, Shu-Yu Chen¹, I-Ming Hung^{1,2} ¹Department of Chemical Engineering and Materials Science, Yuan ze University, Taoyuan City, Taiwan ²Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, Taiwan * Corresponding author: debabratamohanty1997@gmail.com ## **Abstract** The lithium ion batteries are popular energy storage devices due to their high energy density. Traditional organic solvent electrolytes, on the other hand, have significant safety issues, thus developing safer electrolyte materials is a big challenge for lithium ion batteries. Solid electrolytes appear to be a potential replacement for flammable liquid electrolytes in lithium batteries. We developed an ionic conductivity polymer/ceramic hybrid electrolyte membrane. The hybrid electrolyte is made up of PVDF-HFP, which is mechanically stable but soft, LiTFSI which improves lithium ion mobility in the polymer substrate, and LATP, which has excellent ionic conductivity and thermal stability. To establish the optimum composition for electrochemical performance and Li ion mobility, a hybrid electrolyte was produced with varying amounts of LiTFSI. Impedance spectroscopy, linear sweep voltammetry, and charge and structural characterizations were performed on the produced hybrid membranes. The results showed that the percentage of LiTFSI in PVDF-HFP-LiTFSI hybrid electrolytes not exceed 60%. Increasing the lithium salt concentration adds to enhanced lithium ion transfer and ion conductivity, the electrolyte's mechanical strength must still meet membrane formation and protection criteria. such as high ionic conductivity (5.43x10⁻⁵ S cm⁻¹), wide electrochemical stability window (3-6 V) and high electrochemical stability. The results show the 60% content of LiTFSI is the best among other which we studied here. Keywords: Solid-state battery; LiTFSI content; PVDF-HFP; Hybrid electrolyte; Lithium ion mobility # SiO_x/Carbon Multilayer Coating on Silicon Nanoparticles Synthesized via Supercritical CO₂ Fluid for Li-ion Battery Anodes Rahmandhika Firdauzha Hary Hernandha¹, Purna Chandra Rath¹, Bharath Umesh², Jagabandhu Patra^{1,3}, Jeng-Kuei Chang^{1,2,3,*} ¹ Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Taiwan ² Institute of Materials Science and Engineering, National Central University, Taiwan ³ Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Taiwan *Corresponding Author: jkchang@nctu.edu.tw ### **Abstract** Silicon (Si) anode design is essential for development of advanced Li-ion batteries (LIBs) [1]. A systematic study of optimal SiO_x/carbon multilayer-coating silicon nanoparticles (C/SiO_x/Si) to resist the large anode volume expansion/compression during charging/discharging and to produce reliable solid electrolyte interphase [2] has been conducted. An easy and eco-friendly technique for coating has been assisted by a supercritical carbon dioxide (SCCO₂) protocol. It beneficially uses liquid-like SCCO₂ as a primary solvent and is supported by absolute ethanol as a co-solvent ^[3]. C/SiO_x/Si samples are produced via SCCO₂ using various kinds of precursor, such as glucose (the sample is named SC-G), sucrose (SC-S), and citric acid (SC-CA). Additionally, glucose is also applied as the precursor for a traditional wet-chemical method, which produces a T-G sample for comparison. The experimental results show that SC-G has a better carbon layer than T-G, SC-S, and SC-CA. The SC-G has a high tap density due to a conformal and homogeneous carbon coating layer. Furthermore, the SC-G electrode exhibits relatively high reversible capacities of >2150 mAh/g at 0.2 A/g and ~920 mAh/g at 5 A/g. It can retain approximately 65 % of the initial capacity after 300 lithiation-delithiation cycles at 1 A/g. The obtained energy density of a SC-G | LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ full cell (based on the total mass of anode and cathode active materials) is >550 Wh kg⁻¹, which indicates the excellence of the proposed anode. This study demonstrates the great potential of the SCCO₂ protocol for C/SiO_x multilayer coating on Si particles. The synthesis process is easily scaled-up for mass producing ideal Si-based anode materials for LIBs. Keywords: Green process, Secondary battery, Silicon-based anodes, Carbon precursors - [1] Y. Jin, B. Zhu, Z. Lu, N. Liu, J. Zhu, Adv. Energy Mater., 1700715 (2017). - [2] B. Koo, H. Kim, Y. Cho, K. T. Lee, N. S. Choi, J. Cho, *Angew. Chem.*, 51, 1-7 (2012). - [3] R. F. H. Hernandha, P. C. Rath, B. Umesh, J. Patra, C. Y. Huang, W. W. Wu, Q. F. Dong, J. Li, J. K. Chang, *Adv. Funct. Mater.*, 2104135 (2021). B_003 # **Roles of Binders on Self-Discharge for Porous Carbon Supercapacitor Electrodes** Cheng-Chia Chen a, Sutarsis b, Jeng-Kuei Chang a, b ^a Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan ^b Institute of Materials Science and Engineering, National Central University, Taoyuan City, Taiwan *Corresponding author's email: jkchang@nctu.edu.tw #### Abstract Supercapacitors are known for their high power density and long cycle life compared to other energy storage systems. However, self-discharge (SD) is a challenging issue for supercapacitors as standby power systems, since the stored energy starts to decay as time goes by. It means that some of the energy is lost before we start using it. The mechanism of supercapacitor SD can be attributed to: (1) charge redistribution and (2) unwanted faradic side reactions. In this work, for the first time, we explore
the details of the interplay between various binders and the SD mechanism and how an appropriate selection of binders can suppress SD. Here, we use three commonly used binders: (1) carboxymethyl cellulose/styrene-butadiene rubber (CMC+SBR), (2) poly(vinylidene fluoride), and (3) polytetrafluoroethylene to fabricate activated carbon electrodes. The electrolyte used is 1 M TEABF4 in PC. The experimental results show an interesting correlation between pore size distribution (caused by different binders), electrode impedance, and SD. The SD mechanism has been depicted using a combination of mathematical fitting and experimental measurements. Among these binders, CMC+SBR can maximize the mesopores/micropores ratio and thus suppress the electrode SD. **Keywords**: electric double-layer capacitors, activated carbon, organic electrolyte, charge-discharge performance B 004 # Structure evolution and *operando* analysis methods of fast-charging lithium titanate materials developed in HiGEM research center Alex Chinghuan Lee1*, Shih-kang Lin1,2, Jui-po Chen2, Kaviarasan Govindarajan2 ¹ Hierarchical Green-energy Materials (Hi-GEM) Research Center, National Cheng Kung University (NCKU), Taiwan, R.O.C. ² Department of Material Science and Engineering, National Cheng Kung University, Taiwan, R.O.C. * Corresponding author: alex.chl.cera@gmail.com ### **Abstract** Fast-charging lithium titanate has received much attentions in applications of energy storage cabinet or electric bus, since this oxide material shows excellent rate performance and cyclability. During electrochemical reaction, lithium titanate proceeds via two phase transition between Li₄Ti₅O₁₂ and Li₇Ti₅O₁₂.[1] Li-ion insertion/extraction induces a series of structural evolution either in the crystal or at the solid-liquid interface. Lattice site potential analysis is employed using VESTA software to identify site potential of each ion in the unit cell. In the research center, we have developed several operando electrochemical testing methods using X-ray diffraction, micro-Raman spectroscopy and attenuated total reflection infrared spectroscopy. The sampling system play an important role in accurate data acquisition. In this presentation will show the structural evolutions, including lattice parameter or Raman-active vibrational modes of crystals and IR-active bonding of electrolyte, in lithium titanate battery system during operating condition. In addition, a preliminary test of gas evolution based on lithium titanate material will present using infrared spectroscopy-Mass spectrometry connecting system as an analyzing platform. The above mentioned experimental information from operando electrochemical testing methods would guide the synthesis strategies and develop a robust anode material with high C-rate performance and structural integrity. **Keywords:** lithium titanate, *operando* electrochemical testing, phase transition ### References [1] Bote Zhao, Ran Ran, Meilin Liu, Zongping Shao, "A comprehensive review of Li₄Ti₅O₁₂-based electrodes for lithium-ion batteries: The latest advancements and future perspectives." Materials Science and Engineering R 98 (2015) 1-71. # Fe-Cu-Schiff base complexes as Electrocatalysts for Zn-Air Batteries Yu-Si Chen, Tzu Husan Chiang* * Department of Energy Engineering, National United University, Taiwan * Corresponding author: thchiang@nuu.edu.tw ### **Abstract** A electrocatalyst with high electrocatalytic activities for oxygen reduction reaction (ORR) are required for high performance of Zn-Air batteries. In this study, Fe-Cu-Schiff base complexes developed using in air cathode of Zn-air batteries. The electrocatalyst activities of Fe-Cu-Schiff base complexes electrocatalyst with Schiff base prepared by different mole ratio of trimesic acid (TA) to triethylenetetramine (TETA) are studied. The ORR activities in 0.1M KOH solution evaluated using cyclic voltammetry (CV), linear scanning voltammetry (LSV), electrical double layer capacitance (C_{dl}), rotating disk electrode (RDE). The results obtained that the bimetallic Schiff base complexes electrocatalyst consist of 1:1 mole ratio of Fe:Cu with 20 mmol TA and 10 mmol TETA exhibited good ORR activity at 0.61V of reduction potential, and durability in alkaline electrolytes. Figure 1. CV curves of various electrocatalysts prepared using 1:1 mole ratio of Fe:Cu with 20 mmol TA and different mole of TETA. Keywords: Electrocatalyst, ORR, Schiff base complex B 006 # Insight into the degradation mechanism of the Ni-rich NMC cathode materials Ngoc Thanh Thuy Tran* Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, Taiwan *Corresponding Author #### Abstract There have been many efforts to study and produce new materials that would replace the widely used commercial cathode $LiCoO_2$, which has a stable electrochemical performance but on the other hand is neither cost-effective nor environmentally friendly. Recently, Ni-rich $LiNi_{1-x-y}Mn_xCo_yO_2$ (NMC) material has been promoted as a likely alternative material due to its higher thermal stability, higher voltage operation, lower cost and enhanced capacity. In this study, the atomistic structures of Ni-rich NMC have been optimized by means of the DFT calculations. Their structure stability and working voltages under different states of charge have been evaluated. Furthermore, the magnetic moments variation, Bader charge analyses and density of states have been taken into account to investigate the mechanism of oxygen evolution during charging. This work is expected to be helpful for experimental researchers to fully comprehend the cause of structure instability and capacity fading in Ni-rich NMC materials, hence, to find out the suitable solutions. **Keywords:** Battery, DFT calculation, NMC, stability. # E. Energy efficiency technologies and applications E_001 ## A DFT Study of the Effect of Degrees of Inversion on the Electronic Structure of Spinel NiCo₂O₄ Chih-Heng Lee¹, Yi-Ting Lu², Chi-Chang Hu², Hsin-Yi Tiffany Chen^{1*} ^{1*} Department of Engineering and System Science, National Tsing Hua University, Taiwan ² Department of Chemical Engineering, National Tsing Hua University, Taiwan *Corresponding Author: hsinyi.tiffany.chen@gapp.nthu.edu.tw ### **Abstract** $NiCo_2O_4$ is widely used in variable application such as supercapacitors, metal-air battery, and water splitting. The presence of Ni^{2+}/Ni^{3+} and Co^{2+}/Co^{3+} couples are often reported as the reaction center for various applications.[1,2] In this research, the degree of inversion in $NiCo_2O_4$ and its influence on electronic structure of $NiCo_2O_4$ are discussed using density functional theory with Hubbard U correction method (DFT+U). The Bader charge, magnetic moment and decomposed density of state have been analyzed on inverse, intermediate and normal spinel structure of $NiCo_2O_4$. The computed result is also shown to be in good agreement with that predicted by the widely used crystal field theory (CFT). Our result found the relationship between degree of inversion and the valence state of $NiCo_2O_4$ system, which can be used to predict and design the appropriate electronic properties for various potential application. Figure: The conventional inverse NiCo₂O₄ cell (left) and normal NiCo₂O₄ cell (right) Keywords: Density Functional Theory, NiCo₂O₄, First-principle calculation - [1] Huang, Y., et al. Journal of Materials Chemistry A, **2016**. 4(10): p. 3648-3654. - [2] Askari, M.B. and P. Salarizadeh. Journal of Molecular Liquids, 2019. 291: p. 111306. # Flexo-phototronic Effect in Centro-symmetric BiVO₄ Epitaxial Films Pao-Wen Shao^{1,2}, Heng-Jui Liu³, Yuanwei Sun^{4,5}, Mei Wu^{4,5}, Ren-Ci Peng⁶, Meng Wang⁷, Fei Xue⁸, Xiaoxing Cheng⁸, Lei Su¹¹, Hsiao-Wen Chen¹⁵, Meng-Chin Lin¹⁶, Qian Zhuang^{18,19}, Jiawei Huang^{18,19}, Yachin Ivry^{9,10}, Hsiang-Lin Liu¹⁵, Yu-Jung Lu², Shi Liu^{18,19,20}, Pu Yu⁷, Long-Qing Chen⁸, Peng Gao^{4,5}, Xiaoqing Pan^{11,12,13}, Yung-Jung Hsu¹, Jyh-Ming Wu^{16,17}, Yi-Chun Chen¹⁴, and Ying-Hao Chu^{1,21*} ^{1*}Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan ²Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan ³Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan ⁴International Center for Quantum Materials, School of Physics, Peking University, China, ⁵Electron Microscopy Laboratory, School of Physics, Peking University, China ⁶Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, 710049 Xi'an, China, ⁷Department of Physics, Tsinghua University, Beijing, China ⁸Department of Materials Science and Engineering, The Pennsylvania State University, University park, PA 16082, USA ⁹Department of Materials Science and Engineering Technion, Israel Institute of Technology, Haifa 3200003, Israel ¹⁰Solid state institute Technion, Israel Institute of Technology, Haifa 3200003, Israel ¹¹Department of Materials Science and Engineering, University of California, Irvine, USA. ¹²Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, USA. ¹³Irvine Materials Research Institute, University of California at Irvine, Irvine, CA, USA. ¹⁴Department of Physics, National Cheng Kung University, Tainan, Taiwan ¹⁵Department of Physics, National Taiwan Normal University, Taipei, Taiwan ¹⁶Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan ¹⁷ High Entropy Materials Center, National Tsing Hua University, Hsinchu 30010, Taiwan ¹⁸ School of Science, Westlake University, Hangzhou, Zhejiang 310024, China ¹⁹ Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China ²⁰ Key Laboratory for Quantum Materials of Zhejiang Province, Hangzhou Zhejiang 310024,
China ²¹Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan *Corresponding Author ## **Abstract** With exciting functionality, topological defects in ferroic system have attracted much attention. Under proper design, the emergence of polar domain walls in non-polar ferroelastics enables flexo-phototronic effect. In this study, we revealed ferroelastic twin texture with localized flexoelectric effect in epitaxial BiVO₄ film by piezoresponse force microscopy. Supported by the strain field analysis, we found the piezoresponse confined at domain wall area is attributed to the flexoelectric effect induced by the presence of ferroelastic twin domains during the paraelastic to ferroelastic phase transition. The mechanism of flexo-phototronic was further supported by dyedegradation and generation of reactive radical experiments. This work not only provides new insights into the introduction of flexo-phototronic effects in non-polar materials, but also sheds light on a new concept to use material inhomogeneity for acquiring multifunctionality. Keywords: Piezo-phototronics, Flexoelectricity, Domain walls, Centro-symmetric BiVO₄ E 003 # Supercapacitive Properties of Bi-doped ZnCo₂O₄ Nanostructure Synthesized by Insitu Hydrothermal Method Feng-Sheng Chao1*, Chin-Yi Chen1 ^{1*} Department of Materials Science and Engineering, Feng Chia University, Taiwan *Corresponding Author: a0938260623@gmail.com #### **Abstract** The supercapacitor is an indispensable energy storage device which has recently attracted an extensive research interest from both academic and industrial fields, being considered as important as batteries for future energy storage system applications [1]. Bismuth-doped zinc cobalt oxide (Bidoped ZnCo₂O₄) nanostructures were prepared directly onto a carbon cloth substrate by a one-step in-situ hydrothermal method in this study. The structural properties of the composite nanostructure were characterized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The electrochemical properties as well as the long-term cycling stability of the obtained Bi-doped ZnCo₂O₄ nanostructures were examined by cyclic voltammograms (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) as a function of the bismuth doping content. Keywords: supercapacitor, nanostructure, bismuth, zinc cobalt oxide, electrochemical property #### References [1] B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991). E 004 # High-stability transparent flexible energy storage based on PbZrO₃/ muscovite heterostructure Deng-Li Ko¹, Ying-Hao Chu¹ ¹Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan ROC #### Abstract Antiferroelectric materials for dielectric energy storage with fast charging-discharging rate is an important research direction. In this study, to build a platform for the potential application in flexible transparent devices, a combination of the muscovite substrate and the antiferroelectric PbZrO₃ (PZO) is studied as a model system. The growth of PZO is first optimized on rigid substrates and then transferred to muscovite with the form of epitaxial and polycrystalline films. The energy storage performance with robust electrical and mechanical stability is systematically demonstrated. High energy densities of 46~52 J/cm3 were obtained; Compared with the epitaxial PZO, the polycrystalline PZO shows an increase of efficiency by 28% and possesses higher heat resistance. Moreover, fabricated on a transparent indium tin oxide electrode, the PZO heterostructure exhibits excellent energy performance and an optical transmittance of up to 70–80%. Through this study, a paradigm for reliable flexible transparent fast charging-discharging energy storage element is developed. Keywords: Flexible, Energy storage, Transparent, PbZrO₃ F. Fuel Cell F_001 # Study of BaCO₃ and Samarium-doped Ceria Carbonate Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells Azam Khan^{1*}, Yi-Hung Wang¹, and I-Ming Hung^{1, 2,} ¹Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan ²Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan ^{*}Corresponding Author: *chemistazam92@gmail.com* # **Abstract** This article presents the successful testing of 70% w/w samarium-doped ceria mixed with 30% w/w barium carbonate (SDC/BC) electrolyte for use as an improved electrolyte for low-temperature solid oxide fuel cells (LT-SOFCs) [1]. The phase changes, particle size distribution, morphology, electrochemical impedance, conductivity, and maximum power density of the fuel cell based on this SDC/BC composite electrolyte are discussed. The SDC/BC electrolyte is chemically compatible with a Ni-SDC/BC anode. The conductivity of the SDC/BC is 102.7 mS cm⁻¹ at 600 °C with an activation energy of 36.12 kJ mol⁻¹. The maximum power output of the Ni-SDC-BC/SDC-BC/Pt cell is 427 mW cm⁻² at 600 °C, which is attributed to the high electrochemical activity of both the electrolyte and the anode material. These results demonstrate that SDC/BC has potential as a low-temperature electrolyte for LT-SOFC. **Keyword**: **Samarium**-doped ceria, Barium carbonate, Mixed-ionic conductor, Electrolyte; Solid oxide fuel cell ### References [1] W. Zhu, C. Xia, D. Ding, X. Shi. Mater. Res. Bull. 41, 11 (2006). F 002 # High-performance in-situ Ni nanoparticle exsolved LSTN/LNSDC composites for lowtemperature solid oxide fuel cells Zenghui Wang, Liangdong Fan* College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China #### **Abstract** Highly ion-conducting properties in heterostructure composites and semiconductors have drawn significant attention in recent years for developing new electrolytes in low-temperature solid oxide fuel cells (LT-SOFCs). In this study, La_{0.2}Sr_{0.7}Ti_{0.9}Ni_{0.1}O_{3- δ}(LSTN) material was first prepared by doping Ni in La_{0.3}Sr_{0.7}TiO_{3- δ}(LST) material, and r-LSTN with exsolved Ni nanoparticle was obtained from LSTN by treating in 10% hydrogen reduction atmosphere for 10 hour, which is further composited with ionic conductors LNSDC as electrolyte for low temperature SOFCs. To further improve the fuel cell performance, a lithiated metal oxide is used as symmetrical electrode. The cell with NCAL/r-LSTN+LNSDC/NCAL layer structure exhibited a peak power density of 650 mW/cm² along with open circuit voltage of 1.13 V at 550 °C. The experimental results show that the doping and in-situ exsolved of Ni can improve the ionic conductivity of the material, reduce the polarization resistance of the fuel cell. According to the energy band parameters of r-LSTN and LNSDC, a p-n heterojunction effect was proposed to describe the electron blocking and ion promoting processes of r-LSTN-LNSDC electrolyte in fuel cells. **Keywords:** Solid oxide fuel cell; Ionic- semiconductor composite; In-situ exsolution; Band alignment; Heterojunction. L. LED L_001 # Optical Properties of Europium doped Calcium Sulfide Prepared by Carbon Sphere Template Pei-Tzu Cheng^{1*}, Chen-Yu Wu², Horng-Yi Chang Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, ROC Metal Processing R&D Department, Metal Industries Research & Development Centre (MIRDC), Kaohsiung, Taiwan, ROC *Corresponding Author: 0076A042@mail.ntou.edu.tw #### Abstract Europium doped calcium sulfide is an important red phosphor for CRI compensation of white light LED [1,2]. Conventional synthesis methods for sulfide phosphors are necessarily high processing temperatures and use a highly toxic sulfur-containing atmosphere (CS₂, H₂S or S₈) to overcome the problem of sulfur deficiency during the synthesis process [3,4]. In this study, the carbon spheres were prepared by hydrothermal method as a template for synthesizing calcium sulfide and Eu²⁺ doped precursors. Such carbon spheres were then dispersed in the mixed precursor solution containing calcium acetate, Eu(NO)₃·6H₂O and thiourea (NH₂)₂CS using an ultrasonic vibrator. This ultrasonically mixed solution was poured into a round bottom flask and heated at 180 °C for 9 h by a chemical solution reflux process. The stoichiometric ratio of 1:1 for Ca:S was maintained in the reflux reaction solution. The prepared precursors were collected by centrifugation process and drying, then heattreated at 800 °C in N₂ without any excess sulfur atmosphere. The reducing atmosphere generated by the carbon spheres decomposition to obtain the CaS:Eu²⁺ nano-phosphors. XRD patterns proved the CaS phase can be obtained by the stoichiometric precursor without excess sulfur compensation. The highest photoluminescence (PL) intensity of 655 nm excited by 460 nm was found with 0.025 mol% Eu-doping in the range of 0.01~3.0 mol%. The concentration quench of PL occurred at the Eudoping concentration higher than 0.03 mol%. Temperature dependence of PL measured at -196 – 300 °C revealed the difference of energy gap change between pure CaS and Eu²⁺ doped CaS. Thermal quenching was also found from the synthesized CaS:Eu²⁺ nanophosphors at -196°C to 300°C accompanied emission peak blue shift by 250 nm excitation while measuring temperature rise. Interestingly, the 550 nm PL intensity excited by 380 nm exhibited significant thermal quenching for pure commercial CaS but not obvious for pure CaS synthesized by carbon sphere template. **Keywords:** calcium sulfide nanophosphor, carbon sphere template, concentration quench, thermal quench - [1] D. D. Jia, J. Zhu and B. Wub, J. Electrochem. Soc., 147, 3948 (2000). - [2] B. Sun, G. Yi, D. Chen, Y. Zhou and J. Cheng, J. Mater. Chem. C., 12, 1294 (2002). - [3] X. H. He, Y. Zhu, J. Mater. Sci., 43, 1515 (2008). - [4] J.E. Van-Haecke, P.F. Smet, K. De-Keyser, D. Poelman, J. Electrochem. Soc., 154, J278 (2007). L 002 # Synthesis and
characterization of Tb-doped Y₄SiAlO₈N powder by spray pyrolysis Henni Setia Ningsih, Huang-Yu Hsuan and Shao-Ju Shih* Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan * Corresponding author: shao-ju.shih@mail.ntust.edu.tw # **Abstract** White Light Emitting Diode (W-LED) is a kind of mature technology. The product is widely utilized in home and industrial illumination. Yellow phosphor powder (Ce doped YAG) with blue-chip is the most common product. However, its poor color makes it unsuitable for future use in Ultra High Definition Television (UHDTV), notably in green light. The irregular shape and uniform particle size would eventually produce difficulties like uneven luminous chromaticity and reduce the product's lifespan. Thus, in this study, Tb dopant was proposed to synthesize the green phosphor with a specific shape and particle size. Spray pyrolysis was chosen to produce submicron spheres of phosphor powders with varying calcination temperatures. The phase composition, morphology, and chemical composition of Tb-doped Y₄SiAlO₈N powders were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. In addition, the Optical microscope (OM) was used to observe the particle size distribution of the agglomerated powders. Furthermore, the fluorescence spectrometer (PL) examined the luminescence property to determine the green light emission intensity of different phosphor powders. Finally, the strongest luminous intensity was obtained from the Y_{3.92}SiAlO₈N:0.08Tb³⁺ phosphors calcined at 1600°C for 1 h in 5% $H_2/95\%$ N_2 excited by light with a wavelength of 252 nm. Keywords: Spray pyrolysis, Phosphor, Grain size, Emission intensity M. Materials and technologies for a low carbon, sustainable society M_001 # Chemical Looping Gasification of Spent Coffee Ground Using Iron ore as Oxygen Carrier Chia-Wei Huang¹, Yu-Lin Kuo^{1*}, Henok Atile Kibret¹, Yao-Hsuan Tseng² ^{1*} Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan *Corresponding Author: ylkuo@mail.ntust.edu.tw # **Abstract** Coffee, the second most bewelcome drink and the second traded item in the world. However, it generates a huge solid waste during the process of coffee beverage preparation, according to the statistics, each kilogram of soluble coffee will produce about 2 kg wet spent coffee grounds (SCG). The high carbon content, high heating value, low ash, and negligible sulfur content, these characteristics make SCG an alternative fuel source through thermochemical conversion. As we know, the low quality and quantity of the syngas is the main limitation of the thermochemical conversion of biomass to energy and fuel. Owing to the advantages of the chemical looping process, it provides a novel way to carry lattice oxygen for biomass gasification and produce higher heating value and lower tar content syngas. In this study, we used iron ore as oxygen carrier (OC), the effect of OC/B ratio and the synergetic effect of the oxygen carrier and gasification medium (steam and/or CO_2) on the performance of the process were investigated. The surface morphology and chemical composition of iron ore was carried out via field emission scanning electron microscopy and energy-dispersive x-ray fluorescence. Because of the low density of the SCG suspended above the reactor bed, some char was left mixed with the OC on the bed and the iron ore was not completely reduced after SCG gasification with the existence of OC. Nevertheless, the situation can be improved by adding steam and CO_2 gasification medium, under the conditions of higher CO_2/B ratio, 1kg/kg OC/B ratio, and 0.27 S/B molar ratio, the carbon conversion became slightly over 100%, and reasonable LHV and cold gas efficiency improvement was fulfilled **Keywords:** Spent Coffee Grounds (SCG), Chemical looping, Iron ore, Biomass gasification, Waste conversion. M 002 # A Non-Enzymatic, Biocompatible Electrochemical Sensor based on N-doped Graphene Quantum Dot-incorporated SnS₂ Nanosheets for In Situ Monitoring of Hydrogen Peroxide in Breast Cancer Cells Asit Kumar Panda¹, Ren-Jei Chung¹ ¹ Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, Taiwan Corresponding author: rjchung@ntut.edu.tw # **Abstract** The current study reports the design and construction of enzyme-free sensors using N-doped graphene quantum dot (N-GQD)-decorated tin sulfide nanosheets (SnS₂) for sensitive and highly specific in situ monitoring of H_2O_2 secreted by human breast cancer cells. N-GQDs with nanoparticles having an average size of 2.5 nm were incorporated into SnS₂ nanosheets to form a N-GQDs@SnS₂ nanocomposite using a simple hydrothermal approach. The resulting hybrid material was an excellent electrocatalyst for the reduction of H_2O_2 , owing to the combined properties of highly conductive N-GQDs and SnS₂ nanosheets. The N-GQDs@SnS₂-based sensing platform demonstrated substantial sensing ability, with a linear detection range of $0.0125-1128~\mu M$ and a limit of detection of $0.009~\mu M$ (S/N = 3). The sensing performance of N-GQDs@SnS₂ was highly stable, selective, and reproducible. Practical application of the N-GQDs@SnS₂ sensor was successfully demonstrated by quantifying H_2O_2 in lens cleaner, human urine, and saliva samples. Finally, the N-GQDs@SnS₂ biocompatible electrode was effectively employed for the real-time quantification of H_2O_2 released from breast cancer cells and mouse fibroblasts. This study paves a way to designing efficient non-enzymatic electrochemical sensors for various biomolecule detection using a simple method. **Keywords:** reactive oxygen species, hydrogen peroxide, N-doped graphene quantum dots, live cells, enzyme-free sensor M 003 # Investigation on Luminescent Layer of Alkaline-earth Aluminates on Aluminum Alloy Lien-Hui Kan^{1*}, Chen-Yu Wu², Horng-Yi Chang¹ Department of Marine Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan, ROC Metal Processing R&D Department, Metal Industries Research & Development Centre (MIRDC), Kaohsiung 81160, Taiwan *Corresponding Author: 0076A040@mail.ntou.edu.tw ### **Abstract** Metals are well light reflector and possess shallow skin depth to result in eddy current heating. Hot metallic materials under sun-lighting consume solar energy and induce the thermal effects to decrease the useful applications of metals. The aluminum surface produces thin oxide layer easily under ambient atmosphere to protect the metal from further oxidation. If the alkaline earth species coating on the aluminum alloy surface, it is expected to react into spinel structure. Such a spinel structure doped with rare-earth elements could become illuminescent surface layer to promote the energy reuse on the metallic materials. The spinel structures of MgAl₂O₄ and SrAl₂O₄ were investigated to form on A356 aluminum alloy. MgAl₂O₄ can be formed by Al and MgO in air at about 1000 °C [1]. In this study, a substrate of A356 was coated by MgO slurry and co-fired at 1000 °C in an Ar atmosphere. It was found that a MgAl₂O₄ phase formed by XRD analysis. When the Eu₂O₃ slurry was further coated, the MgAl₂O₄:Eu³⁺ may form to produce luminescent properties. The co-fired MgAl₂O₄:Eu³⁺ layer was observed a 612 nm peak of photoluminescence emission (PL) under 260 nm excitation. This result is confirmed as a spinel structure of MgAl₂O₄:Eu³⁺ [2]. The formation of MgAl₂O₄ was proved by EDS that the inter-diffusion of MgO and Al in A356. Similarly, a SrO slurry was further coated on MgAl₂O₄. The (Sr, Mg)Al₂O₄ structure was detected by XRD pattern. Further luminescent properties and formation mechanism are under investigation. The long afterglow characteristics will be studied by doping multiple rare-earth species. **Keywords:** spinel structure, photoluminescence, inter-diffusion - [1] I. Ganesh, Int. Mater. Rev., 58(2), 63 (2013). - [2] I. E. Kolesnikov, E. V. Golyeva, A. V. Kurochkin, M. D. Mikhailov, J. Alloys Compd., 654, 32 (2016). P. Photovoltaic / Solar power P_001 # Development of Visible Light Responsive TiO₂ Photoelectrodes by Metal Nanoparticle Loading Chia-Yu Chang^{1,2}, Kosaku Kato¹, Akira Yamakata^{1*}, Wenjea J. Tseng² ^{1*} Department of Advanced Science and Technology, Toyota Technological Institute, Japan ² Department of Materials Science and Engineering, National Chung Hsing University Taiwan *Corresponding Author # **Abstract** TiO₂ is one of the most used photocatalyst materials because of its nontoxicity and high chemical stability.[1] To use sunlight effectively, visible light for TiO2 is important since TiO2 can only absorb UV light. With surface plasmon resonance, electrons could be excited to induce electron transfer from metal particles to TiO₂ under visible light irradiation. In this study, TiO₂ electrodes were first made on FTO glass by spray pyrolysis and atomic layer deposition (ALD). Then, several kinds of metal nanoparticles were loaded on the TiO₂ electrodes by photodeposition method. Three-electrode system was used to measure the photoelectrochemical activity and the electrodes were irradiated by visible light from LED at 0.2 Hz. Water oxidation and reduction take place on metal particles and counter electrode, respectively. A TiO₂ amorphous layer made by the ALD treatment connects TiO₂ particles, thus increases electron-conductivity and the activity accordingly. After annealing, crystallization of TiO₂ amorphous layer increased the mobility of electrons from metal particles to FTO glass, hence, the activity increased. The result of light energy dependence showed shorter wavelength of light gave higher photon energy, hence, electrons were more easily transfer to TiO₂. The transient absorption spectra
showed a broadband absorption appeared in the mid-infrared region and assigned to free electrons excited from metal particles to TiO₂ conduction band. [2] With surface plasmon resonance, ALD treatment and post annealing effect, metal loaded TiO₂ electrodes show photoelectrochemical activity under visible light illumination. Keywords: Titanium oxide, photoelectrochemical, surface plasmon resonance - [1] M. Ni, M. K..H. Leung, D. Y. C. Leung, K. Sumathy, *Renewable and Sustainable Energy Reviews*, **11**, 401 (2007). - [2] A. Yamakata, J. J. M. Vequizo, H. Matsunaga, J. Phys. Chem. C, 119, 24538 (2015). # **Poster Session** | Paper ID | Corresponding
Author | All Authors | Title | Institution | Department | |----------|-------------------------|---|--|---|---| | A_P01 | Hairus Abdullah | Noto Susanto
Gultom, Dong-
Hau Kuo, Chien-
Hui Li, and
Hairus
Abdullah, | Impressive OER Performance on Micro-Tree-Like Ni ₃ S ₂ in Alkaline Solution | National Taiwan
University of
Science and
Technology | Department of
Materials
Science and
Engineering | | A_P02 | Chi-Yuan Lee | Chi-Yuan Lee,
Chia-Hung
Chen, Shan-Yu
Chen, Zhi-Yu
Huang | Integration of High Pressure
Resistant Flexible 6-in-1
Microsensor and High Pressure
Proton Exchange Membrane
Water Electrolyzer | Yuan Ze
University | Department of
Mechanical
Engineering | | A_P03 | Chi-Yuan Lee | Chi-Yuan Lee,
Chia-Hung
Chen, Guo-Bin
Jung, Shih-
Hung Chan,
Shan-Yu Chen,
Jyun-Wei Yu,
Bo-Jui Lai | PEMWEs MEA Anode Internal
Sensing Technology
Development | Yuan Ze
University | Department of
Mechanical
Engineering | | A_P04 | Jui-Teng Lee | Jui-Teng Lee,
Shih-Hsiu Chen,
and Chia-Yun
Chen | Incorporation of Au@CuSCu ₂ S nanoparticles on ZnO nanosheets for efficient photodark responsive degradation of organic pollutants | National Cheng
Kung University | Materials
Science and
Engineering | | B_P01 | Tai-Feng Hung | Mohamed M.
Abdelaal, Tzu-
Cheng Hung,
Tai-Feng Hung | Polymer-derived Nitrogen-
doped Carbon Materials with
Hierarchically Porous
Architectures toward Capacitive
Performances for Lithium-ion
Capacitors | Ming Chi
University of
Technology | Doctoral Degree Program of Energy and Battery Technology | | B_P02 | Te-Wei Chiu | Dhanapal Vasu,
Arjunan Karthi
Keyan,
Subramanian
Sakthinathan,
Te-Wei Chiu | Excellent Electrochemical active CuFe ₂ O ₄ 3D-rGO based Supercapacitor Electrodes with an Ultrahigh Specific Capacitance | National Taipei
University of
Technology | Materials and
Mineral
Resources
Engineering | | B_P03 | Arjunan Karthi
Keyan | Arjunan Karthi
Keyan,
Dhanapal Vasu,
Subramanian
Sakthinathan,
Te-Wei Chiu | High energetic supercapacitor electrode of CuCoO₂P-rGO nanocomposite with ultrahigh specific capacitance | National Taipei
University of
Technology | Department of materials and mineral resources engineering | | B_P04 | Zhen Chong | Zhen Chong,
Jow-Lay Huang,
Chia-Chin
Chang, Yu-Min
Shen | Performance of Molybdenum-
Modified Titanium Oxide as
anode for lithium-ion Battery | National Cheng
Kung University | Material
Science and
Engineering | | B_P05 | Chi-Yuan Lee | Chi-Yuan Lee,
Chia-Hung
Chen, Chin-
Lung Hsieh, Yu-
Chun Chen,
Siao-Yu Chen | Development of Instant
Diagnostic Technology for
Hydrogenvanadium Flow
Battery | Yuan Ze
University | Department of
Mechanical
Engineering | |-------|----------------------|--|---|---|---| | B_P06 | Jen-Hao Yang | Jen-Hao Yang,
Kuan-Zong
Fang, and Shu-
Yi Tsai | Effect of Synthesis Routes on
Nickel rich and Cobalt-free
Layered Oxides Cathode for Li
Ion Batteries | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | B_P07 | Xiejing Luo | Xiejing Luo, Chaofang Dong, Yarong Xi, Chenhao Ren, Junsheng Wu, Dawei Zhang, Xiongbo Yan, Yajun Xu, Pengfei Liu, Yedong He, Xiaogang Li | Computational simulation and efficient evaluation on corrosion inhibitors for electrochemical etching on aluminum foil | University of
Science and
Technology
Beijing | Institute for
Advanced
Materials and
Technology | | B_P08 | Jia-Hong Du | Jia-Hong Du,
Shu-Yi Tsai,
Kuan-Zong
Fung | Polarization Reduction of Surface-Modified Garnet Solid_Electrolytes for Solid State Li-ion Battery Applications | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | B_P09 | Yu-Hsuan Su | Yu-Hsuan Su,
Po-Wei Chi,
Tanmoy Paul,
Koo-Ting Chan,
Hwai-En Lin,
Phillip M. Wu,
Maw-Kuen Wu | Synthesis and Electrochemical
Properties of Single-Crystal
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode for
Lithium-Ion Batteries | Academia
Sinica | Institute of
Physics | | B_P10 | Zih-Heng Hsieh | Zih-Heng
Hsieh ,Kuan-
Zong Fung, and
Shu-Yi Tsai | Characterization of spinel cathode material for advanced lithium-ion batteries | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | B_P11 | Yi-Hung Wang | Yi-Hung Wang,
Ya-Chen Tsai,
Wei-Ning Hsieh,
I-Ming Hung,
Cheng-Yeou Wu | Effect of concentration on performance of ZrO ₂ nanoparticle electrochemical in Vanadium Redox Flow Batteries | Yuan Ze
University | Department of chemical engineering and materials science | | B_P12 | Debabrata
Mohanty | Debabrata
Mohanty, Jing-
Yu Lai, Pao-Wei
Ou, I-Ming
Hung | Synthesis and Properties of Li ₂ MnO ₃ -LiMn _{1/3} Co _{1/3} Ni _{1/3} O ₂ Cathode Materials for Lithium-Ion Battery | Yuan Ze
University | Department of chemical engineering and materials science | | B_P13 | Jing-Yu Lai | Jing-Yu Lai,Jie-
Yu Liao, I-Ming
Hung | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Yuan Ze
University | Department of chemical engineering and materials science | | B_P14 | Jing-Yu Lai | Jing-Yu Lai,
Ming-Yan Chen,
I-Ming Hung | $\begin{array}{lll} \mbox{Microwave} & \mbox{co-precipitation} \\ \mbox{synthesis} & \mbox{and} & \mbox{electrochemical} \\ \mbox{characterization} & \mbox{of} & 0.4 \mbox{Li}_2 \mbox{MnO}_3 \mbox{-} \\ \mbox{0.6LiMn}_{1/3} \mbox{Co}_{1/3} \mbox{Ni}_{1/3} \mbox{O}_2 & \mbox{as} \end{array}$ | Yuan Ze
University | Department of
chemical
engineering
and materials | | | | | Cathode Material for lithium-ion battery | | science | |-------|------------------|---|---|--|--| | E_P01 | Enzhu Lin | Enzhu Lin,
Zihan Kang,
Jiang Wu, Rui
Huang, Ni Qin,
Dinghua Bao | The effects of selectively and randomly deposited Ag nanoparticles on the piezocatalytic activity of BaTiO ₃ nanocubes/cuboids | Sun Yat-Sen
University | School of
Materials
Science and
Engineering | | E_P02 | Tung-Wei Chang | Tung-Wei
Chang , Ren-
Shuo Chang , I-
Ming Hung | Development of nano-sized Fe-
based powder for Inductance | Yuan Ze
University | Department of chemical engineering and materials science | | E_P03 | Chang-Chun Zheng | Chang-Chun
Zheng, Fu-Hsing
Lu | Preparation of Nitrogen-doped
BaTiO ₃ Thin Films on TiNSi by
_Plasma Electrolytic Oxidation | National Chung
Hsing
University | Department of
Materials
Science and
Engineering | | E_P04 | Te-Wei Chiu | Kai-Chun Hsu,
Heng-Jyun Lei,
Chung-Lun Yu,
Te-Wei Chiu | Preparation of CeO ₂ -CuCrO ₂ composite by electrospinning method | National Taipei
University of
Technology | Materials and
Mineral
Resources
Engineering | | E_P05 | Te-Wei Chiu | Bing-Zhen Hsu,
Chung-Lun Yu,
Te-Wei Chiu,
Bing-Sheng Yu | Porous Structure ZnO-ZnFe ₂ O ₄
Catalyst Applied by Hydrogen
from Methanol Steam
Reforming | National Taipei
University of
Technology | Materials and
Mineral
Resources
Engineering | | F_P01 | Chi-Yuan Lee | Chi-Yuan Lee ,
Chia-Hung
Chen , Yun-Hsiu
Chien , Yi-Lun
Chien | Flexible Integrated Microsensor
for In-situ Monitoring of Proton
Battery | Yuan Ze
University | Department of
Mechanical
Engineering | | F_P02 | Wei-Cheng Chin | Wei-Cheng
Chin, Yi-Hsuan
Lee | Correlation between NiFe ₂ O ₄
Cathode Thickness and
Hydrogen Production Efficiency
for Solid Oxide Electrolyzer Cells | National Taipei
University of
Technology | Department of
Mechanical
Engineering | | F_P03 | Kuan-Lin Chen | Chia-Chieh
Shen, Kuan-Lin
Chen | Hydrogen Storage Alloy Tanks
for Fuel Cell Assisted Bicycles | Yuan Ze
university | mechanical
engineering | | F_P04 | Yen-Yu Chen | Wei-I Yen,
Hsin-
Chieh Hsieh,
Ying-Chen Lin,
Sih-Yu Chen,
Yen-Yu Chen | Preparation of Porous Zirconia
by Ceramic Photo-
polymerization Process | Chinese Culture
University | Chemical and
Materials
Engineering | | F_P05 | Jhih-Yu Tang | Jhih-Yu Tang,
Kuan-Zong
Fung, Shu-Yi
Tsai, Jarosław
Milewski,
Tomasz
Wejrzanowski | Effect of Dual Phases on Ionic
Conduction of Consisting of
Doped Ceria and Carbonates | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | F_P06 | Yuan-Jie Tsai | Yuan-Jie Tsai ,
Kuan-Zong
Fung, Shu-Yi
Tsai | A Modified Solid-State Reaction
Method to Synthesize Proton-
Conducting BaCe _{0.5} Zr _{0.3} Y _{0.2} O ₃₋₆
Electrolyte with Improved
Sinterability | National Cheng
Kung University | Department of
Materials
Science and
Engineering | | F_P07 | Sheng-Wei Lee | W. Y. Huang, K.
R Lee, Jason S.
C. Jang, J. C.
Lin, I. M. Hung,
C. J. Tseng, S.
W. Lee | Nd-doped LSCF nano-fibrous cathode for proton-conducting solid oxide fuel cells | National
Central
University | Institute of
Materials
Science and
Engineering | |-------|-----------------|---|--|-----------------------------------|---| | F_P08 | Chia-Chieh Shen | Chia-Chieh
Shen, Li Qun
Hu, Shen Ta
Wei | Small Fuel Cell Powered Vehicle | Yuan Ze
University | Department of
Mechanical
Engineering | | F_P09 | Liangdong Fan | Shiyi Luo,
Liangdong Fan | Intermediate temperature solid oxide fuel cell with nanoscale electrodes fabricated by onestep sintering technology | Shenzhen
University | College of
Chemistry and
Environmental
Engineering | | F_P10 | Liangdong Fan | Yanpu Li,
Liangdong Fan | Enhancement of Oxygen
Reduction Reaction activity of
Cobalt Based Cathode in Solid
Oxide Fuel Cell | Shenzhen
University | College of
Chemistry and
Environmental
Engineering | | F_P11 | Azam Khan | Azam Khan, Ko-
Yun Chao,
Zheng-An
Wang ,I-Ming
Hung | $\begin{array}{lll} \text{Preparation} & \text{and} \\ \text{Characterization} & \text{of} & \text{YxBa}_{2-} \\ _{x}\text{Co}_{2}\text{O}_{5+\delta} & \text{Cathode Material for} \\ \text{Solid Oxide Fuel Cell} \end{array}$ | Yuan Ze
university | Department of chemical engineering and materials science | | F_P12 | Ko-Yun Chao | Ko-Yun Chao,
Ching-Hsuan
Wu, I-Ming
Hung | Preparation and Properties of Y _x Sr _{1-x} yTiO _{3-δ} anode for Solid Oxide Fuel Cells | Yuan Ze
university | Department of chemical engineering and materials science | | F_P13 | Ko-Yun Chao | Ko-Yun Chao,
Kuan-Chi Fu, I-
Ming Hung | Preparation and
Characterization of High
Temperature Mixed Proton-
electron Conductors | Yuan Ze
university | Department of chemical engineering and materials science | | F_P14 | Takeshi Kawai | Takeshi Kawai,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Hisao Suzuki,
Naoki Wakiya | Spontaneous formation of superlattice thin film with perovskite A³+B³+O₃ structure using dynamic aurora PLD and its effect on physical properties | Shizuoka
University | Research
Institute of
Electronics | | F_P15 | Haruki Zayasu | Haruki Zayasu,
Hiroki Nakane,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Hisao Suzuki,
Naoki Wakiya | Preparation and characterization of epitaxially grown YSZ thin films on porous silicon substrates for SOFC applications | Shizuoka
University | Research
Institute of
Electronics | | F_P16 | Kaoru Ogata | Kaoru Ogata,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Hisao Suzuki,
Naoki Wakiya | Spontaneous formation of superlattice thin films on substrates having heterogenious structure using dynamic aurora PLD | Shizuoka
University | Research
Institute of
Electronics | | F_P17 | Kazuto Yoshida | Kazuto Yoshida,
Hisao Suzuki,
Takashi Arai,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Naoki Wakiya,
Desheng Fu | Low temperature synthesis of PZT thin films with giant piezoelectric displacement on glass substrate by domain engineering from molecular-designed precursors | | Graduate
School of
Integrated
Science and
Technology | |-------|-------------------|--|---|--|---| | F_P18 | Ryoya Nishimura | Ryoya
Nishimura,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Hisao Suzuki,
Naoki Wakiya | The effect of starting materials on low-temperature preparation of Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ single crystal using the flux method | Shizuoka
University | Graduate
School of
Integrated
Science and
Technology | | F_P19 | Seiji Sogen | Seiji Sogen,
Hisao Suzuki,
Takashi Arai,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Naoki Wakiya,
Desheng Fu | Synthesis of PZT thin film with single crystal-like ferroelectricity on SUS substrate | Shizuoka
University | Graduate
School of
Integrated
Science and
Technology | | F_P20 | Ayano lizuka | Ayano lizuka,
Takahiko
Kawaguchi,
Naonori
Sakamoto,
Hisao Suzuki,
Naoki Wakiya | Computer simulation via phase-field method to consider the effect of magnetic field on the formation process of spontaneous superlattice structure using dynamic auroral PLD | Shizuoka
University | Research
Institute of
Electronics | | F_P21 | Yi-Chu Han | Yi-Chu Han,
Yung-Chin Yang | The study of 8YSZ electrolyte fabrication of the tubular solid oxide fuel cells by the dipcoating method | National Taipei
University of
Technology | Institute of
Materials
Science and
Engineering | | F_P22 | Yi-Le Liao | Yi-Le Liao, Sea-
Fue Wang | The Research of the Mechanism of in-situ Sintering Solid Oxide Fuel Cell | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | | H_P01 | Yi Hsiang Lai | Yi-Hsiang Lai,
Yung-Jen Lin | Processing and performance of oxidation-resistant layers on graphite | Tatong
University | Department of
Materials
Engineering | | H_P02 | Chien-Chih Chiang | Chien-Chih
Chiang, Jeou-
Iong Lee,
Chang-Chia
Chou, Jin-Yih
Kao, Ming-Han
Tsai, Ya-Chi Wu | Influence of Unipolar Pulsed
Two-Stage Rise Voltage on Wear
Resistance of Carbon Steel
Surface Using MAO method | University of | Department of
Chemical and
Materials
Engineering | | H_P03 | Kai-Yo Huang | Kai-Yo Huang,
Yu-Chuan Wu,
Chun Ming | Analysis of the microstructure
and dielectric properties on
CaCu ₃ Ti ₄ O ₁₂ -based dielectric | | Materials
Science and
Engineering | | | | _ | ceramic materials | | | |-------|-------------------|--|--|---|---| | H_P04 | Ming-Zhe Lu | Yeh Ming-Zhe Lu, Yu-Chuan Wu, Yu-Chen Yeh, Chun-Ming Huang | High temperature stability BaTiO ₃ -Bi _{0.5} Na _{0.5} TiO ₃ -based dielectric ceramics of formulation improvement and material properties analysis | National Taipei
University of
Technology | Department of
Materials
Science and
Engineering | | H_P05 | Gourav Mundhra | Gourav
Mundhra | Use of a composition-graded solid electrolyte for determination of Gibbs energy of formation of lanthanum hafnate A prospective TBC material for turbine applications | National
Institute of
Technology
Durgapur | Department of
Metallurgical
and Materials
Engineering, | | H_P06 | Tsung-Yang Ho | Tsung-Yang Ho,
Shu-Yi Tsai,
Kuan-Zong
Fung | High Performance Solid State SO ₂ sensor using Nanostructured Oxides | National Cheng
Kung university | Material
science | | H_P07 | Chien-Chih Chiang | Chien-Chih Chiang, Jeou- long Lee, Ta- Lun Sung, Shin- Cheng Chen, Yuan-Wen Huang, Chi-Yu Hsu, Hsuan- Hsien Chuang | Effects of MAO Coating on the
Hardness and Corrosion
Resistance of 6032 Aluminium
Alloy | Lunghwa
University of
Science and
Technology | Department of
Chemical and
Materials
Engineering | | H_P08 | Bo-Cheng Lai | S.F. Wang, B.C.
Lai, and C.A. Lu | Dielectric properties of CaO–
B ₂ O ₃ –SiO ₂ glass-ceramics in the
millimeter-wave range of 20–60
GHz frequency | National Taipei
University of
Technology | Institute of
Materials
Science and
Engineering | | L_P01 | Mu-Tsun Tsai | Mu-Tsun Tsai,
Ya-Chen Lin, Ya-
Lun Chug | Luminescence Investigation of
Chromium-doped Forsterite
Phosphor Thin Films | National
Formosa
University | Department of
Materials
Science and
Engineering | | L_P02 | Mu-Tsun Tsai | Mu-Tsun Tsai,
Chu-Xian Yao,
Yi-Jun Luo | Luminescence Investigation of
Blue-emitting Cordierite
Phosphor Thin Films | National
Formosa
University | Department of
Materials
Science and
Engineering | | L_P03 |
Chien-Chih Chiang | Chien-Chih Chiang, Jeou- Long Lee, Ta- Lun Sung, Tzu- Chieh Kao, Chen-Ying Wu, Shin-Tse Chen, Chien-Yu Ku | Structures and Photoluminescence Properties of (Ba/Sr) _{1-x} MgAl ₁₀ O ₁₇ Eux ₂ /Phosphors | Lunghwa
University of
Science and
Technology | Department of
Chemical and
Materials
Engineering | | M_P01 | Chung-Lun Yu | Chung-Lun Yu,
Subramanian
Sakthinathan,
Sheng-Yu Chen,
Te-Wei Chiu,
Yung-Shen Fu,
Bing-Sheng Yu | ZnO-ZnCr ₂ O ₄ Catalyst Fabricated
by Glycine Nitrate Process and
Used for Hydrogen Generation
with the Steam Reforming of
Methanol | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | | M_P02 | Zhen-Yu Sun | Zhen-Yu Sun,
Chung-Lun Yu,
Te-Wei Chiu | CuCrO ₂ -TiO ₂ Nanocomposites
Prepared by Glycine Nitrate
Process and Photodegradation
the Organic Dye with Ultraviolet
Light | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | |-------|----------------|---|--|--|---| | M_P03 | Yung-Fu Wu | Yung-Fu Wu,
Yung-Lin Chen,
Wei-Teng
Wang, Yu-Ya Lin | Nickel Recovery from Spent
Plating Solution by Chemical
Precipitation | Ming Chi
University of
Technology | Department of
Chemical
Engineering | | M_P04 | Yung-Fu Wu | Yung-Fu Wu,
Yung-Lin Chen,
Wei-Teng
Wang, Yu-Ya Lin | Anticorrosion for 304 Stainless
Steel by Using TiO ₂ Ag ₂ O
Protection Layer | Ming Chi
University of
Technology | Department of
Chemical
Engineering | | M_P05 | Chin-Wei Hung | Kai-Chun Hsu,
Chin-Wei Hung,
Subramanian
Sakthinathan,
Te-Wei Chiu,
Fang-Yu Fan,
Yung-Kang Shan | Fabrication of CuYO ₂ Nanofibers
by Electrospinning | Taipei Medical
University | Dental
Technology | | M_P06 | Yu-Feng You | Yu-Feng You,
Chung-Lun Yu,
Te-Wei Chiu | Preparation of Janus Structure
ZnOCuO Composite Oxide
Particle | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | | M_P07 | Shu-Yi Tsai | Shu-Yi Tsai ,
Kuan-Zong
Fung, Khoiril
Metrima
Firmansyah | Effect of adding mesoporous silica KIT-6 of V ₂ O ₅ WO ₃ TiO ₂ catalyst for selective catalytic reduction | National Cheng
Kung University | Hierarchical
Green-Energy
Materials
Research
Center | | M_P08 | Qiaofeng Han | Huiwei Ding,
Qiaofeng Han | Synthesis of Bi ₄ O ₅ I ₂ BiOI heterojunction with improved visible-light photocatalytic activity | Nanjing
University of
Science and
Technology | School of
Chemistry and
Chemical
Engineering | | M_P09 | Min Ao | Min Ao, Hui-
min Liu, Chao-
fang Dong | The effect of La ₂ O ₃ addition on intermetallic-free aluminium matrix composites reinforced with TiC and Al ₂ O ₃ ceramic particles | University of
Science and
Technology
Beijing | Institute for
Advanced
Materials and
Technology | | M_P10 | Ying-Chieh Lee | Jhen-Hau Jan,
Annisa
Oktaafianti,
Choong Yen
Voon , Ying-
Chieh Lee | A Study of Low-Temperature Sintering of Al_2O_3 Ceramics with TiO_2 and Nb_2O_5 addition | National
Pingtung
University of
Science and
Technology | Materials
Engineering | | M_P11 | Li-En Chen | Tzu-Hsuan Tsai,
Li-En Chen,
Chih-Lung Lin,
Teng-Yu Wang | Electrostatic separation for recycling silicon from the crushed photovoltaic modules | National Taipei
University of
Technology | Institute of
Mineral
Resources
Engineering | | M_P12 | Zihan Kang | Zihan Kang,
Kanghui Ke,
Enzhu Lin, Ni
Qin, Jiang Wu,
Rui Huang and
Dinghua Bao | Novel $Bi_2WO_6/g-C_3N_4/ZnO$ Z-scheme heterojunctions with g- C_3N_4 interlayer modulated by piezoelectric polarization for efficient piezo-photocatalytic decomposition of harmful | Sun Yat-Sen
University | Department of
materials
science and
Engineering | | | | | organic pollutants | | | |-------|-------------------|--|---|---|---| | M_P13 | Mi Chen | Cheng-Ch
Wu ,Horng-
Show Koo
Ming-An Chung
and Mi Chen | Characerization of
Graphene/CNTs Hybrid
Conductive Film by Screen
Printing | Minghsin
University of
Science and
Technology,
Taiwan | Department of
Chemical and
Materials
Engineering | | M_P14 | Wan-Chien Wu | Wan-Chien Wu,
Yung-Chin Yang | Developments of Calcium
Sulfate Coating on Ti ₆ Al ₄ V
Substrate by Flame Spray | National Taipei
University of
Technology | Institute of
Materials
Science and
Engineering | | M_P15 | Ying-Hao Chu | Ti Hsin, Pao-
Wen Shao,
Ying-Hao Chu | High entropy piezo-catalyst oxide for dye-degradation | National Yang
Ming Chiao
Tung University | Department of
Materials
Science and
Engineering | | P_P01 | Chien-Chih Chiang | Chien-Chih Chiang, Jeou- Long Lee, Ta- Lun Sung, Jui- Chang Chen, Chin-Yen Chang, Chih- Chun Kuo | Synthesis and Characteristic of III-VI Metal Chalcogenide semiconductor nanoparticle | Lunghwa
University of
Science and
Technology | Department of
Chemical and
Materials
Engineering,
Master. | | P_P02 | Sea-Fue Wang | Gu-Yan Liao,
An-Cheng
Aidan Sun, and
Sea-Fue Wang | Characteristics of La ³⁺ dopants
in CeO ₂ thin films for resistance
random access memory
application | National Taipei
University of
Technology | Department of
Materials and
Mineral
Resources
Engineering | # A. Alternative energies A_P01 # Impressive OER Performance on Micro-Tree-Like Ni₃S₂ in Alkaline Solution Noto Susanto Gultom, Dong-Hau Kuo*, Chien-Hui Li, and Hairus Abdullah*, Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan *Corresponding Authors: dhkuo@mail.ntust.edu.tw; hairus@mail.ntust.edu.tw ### **Abstract** Water electrolysis is regarded as a green method for producing hydrogen as an energy carrier with great potential. Oxygen evolution reaction (OER) as the half-reaction in water splitting has been the major obstacle for actual application [1]. In this work, we synthesized Ni₃S₂ directly on nickel foam (NF) which served as the nickel source and the substrate. To optimize the electrocatalytic performance of Ni₃S₂, different amounts of thioacetamide (TAA, at 0, 2, 4, 6 mmol) as the sulfur source was added into 50 mL DI water during a hydrothermal process. X-ray diffraction analysis reveals that all samples have Ni₃S₂ phase with a trigonal crystal structure. As shown in Fig. 1, the scanning electron microscope image exhibits that pure nickel foam has a very smooth surface. After adding a low amount of TAA (2 mmol), the surface becomes much rougher than the NF. The microtree-like surface morphology was formed when the amount of additional TAA was more two mmol. Based on X-ray photoelectron spectroscopy analysis, our nickel in NS-4 consists of bimetallic and trimetallic (Ni²⁺ and Ni³⁺). Furthermore, the chemical composition of nickel and sulfur was 63.15 % and 36.85 %, respectively. The as-prepared electrocatalyst was then tested for OER in an alkaline environment. The electrocatalytic LSV graph in Fig. 2 shows that OER performances of Ni₃S₂ are significantly improved after increasing the amounts of TAA. NS-4 with four mmol TAA exhibited the best performance for OER with overpotentials of 0.28 and 0.38 V to reach the current densities of 10 and 100 mA/cm², respectively. The superb performance of NS-4 was contributed by the efficient electron transfer and high surface-active area. **Keywords:** Electrocatalyst, Oxygen evolution reaction, Ni₃S₂, micro-tree **Fig. 1.** Electron microscope of (a) NF, (b) NS-2, (c) NS-4, (d) NS-6 **Fig. 2.** Linear sweep voltammogram (LSV) of Ni₃S₂ with different amounts of TAA ### References [1] Wu, A., et al., Nano Energy, 2018. 44: p. 353-363. A P02 # Integration of High Pressure Resistant Flexible 6-in-1 Microsensor and High Pressure Proton Exchange Membrane Water Electrolyzer Chi-Yuan Lee 1*, Chia-Hung Chen 2, Shan-Yu Chen 1, Zhi-Yu Huang 1 ^{1*} Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan, ² HOMYTECH Global CO., LTD, Taoyuan, Taiwan *Corresponding Author: cylee@saturn.yzu.edu.tw ### **Abstract** Atmospheric pressure proton exchange membrane water electrolysis (PEMWE) hydrogen production is an electrochemical reaction, and requires a high operating voltage, which is prone to aging and failure. The uneven distribution of important internal physical quantities of PEMWE operation will affect its performance and life. How to micro-monitor the six important physical quantities of high pressure PEMWE in real time and get the best operating conditions and prevent failure or damage improve performance and safety which is the focus of research and development. The research used micro-electro-mechanical systems (MEMS) to innovatively develop high pressure resistant flexible 6-in-1 (pressure, temperature, humidity, flow, voltage and current) microsensor. The microsensor is embedded in different positions inside in the high pressure PEMWE for real-time microscopic
monitoring, and using monitoring data to improve the performance and safety of high-voltage PEMWE. **Keywords:** High pressure proton exchange membrane water electrolyzer, High pressure resistant flexible 6-in-1 microsensor, Real-time microscopic monitoring A P03 # PEMWE's MEA Anode Internal Sensing Technology Development Chi-Yuan Lee 1*, Chia-Hung Chen 2, Guo-Bin Jung 1, Shih-Hung Chan 1, Shan-Yu Chen 1, Jyun-Wei Yu 1, Bo-Jui Lai 1 ^{1*} Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan ² HOMYTECH Global CO., LTD, Taoyuan, Taiwan *Corresponding Author: cylee@saturn.yzu.edu.tw ### **Abstract** The three important physical parameters inside the membrane electrode assembly (MEA) of proton exchange membrane water electrolyzer (PEMWE). Voltage, current, and temperature are not easy to accurately measure, and these three important physical parameters are related to each other and have a key impact on the performance and local aging of the water electrolyzer. However, the existing measurement methods are difficult to measure the performance changes of the local microscopic dimensions of the water electrolyzer in real time. This also makes the water electrolyzer in the process of repeated operation for a long time, the failure of the water electrolyzer can only be inferred by simulation or extremely high-cost, destructive, and non-immediate analysis and discussion of the causes often result in too macro or narrow-minded. This paper uses MEMS technology to innovate and develop a small size and high sensitivity flexible three-in-one (voltage, current, temperature) microsensor, which can measure and analyze the local performance of the PEMWE's MEA. This flexible three-in-one microsensor has three functions, corrosion resistance, small size, high sensitivity, real-time measurement and can be placed in any position and many other advantages. **Keywords:** Flexible three-in-one microsensor, proton exchange membrane water electrolyzer, MEMS, MEA # Incorporation of Au@CuS/Cu₂S nanoparticles on ZnO nanosheets for efficient photo/dark responsive degradation of organic pollutants Jui-Teng Lee1*, Shih-Hsiu Chen1, and Chia-Yun Chen1 1* Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan * Chia-Yun Chen , E-mail: timcychen@mail.ncku.edu.tw ### **Abstract** ZnO has been consider one of most popular photocatalytic materials because of its nontoxic, intrinsic electronic structure, and remarkable optical property. However, the wide bang gap (3.37 eV) and high carrier recombination rate limits its performance of photocatalytic degradation. Therefore, in this study, the novel heterostructures consist Copper (I) sulfide and Copper (II) sulfide as shells to cover gold nanoparticles as cores that uniformly decorate the ZnO nanosheets for the realization of day-night responsive photocatalysts. Through the band alignment of this heterojunctions, carrier can not only separate effectively, but also highly improved the efficiency of photodegradation under light illumination. In a dark environment, the Copper (I) sulfide can catalyze H_2O_2 and convert H_2O_2 into hydroxyl radicals. Through this dark-degradation mechanism, hydroxyl radicals can react with organic pollutants even under the environment without light illuminations [1]. Moreover, this composite structure can also utilize its adsorption characteristics to make pollutant molecules absorbed on the photocatalytic surface. From these findings, such Au@CuS/Cu₂S nanoparticles decorated on ZnO nanosheets can effectively initiate the photocatalytic and dark-catalytic reactions that could be applied for day-night active removal of organic pollutants. Keywords: Photocatalysts, Copper sulfide, ZnO nanosheets, dark degradation Fig. 1 SEM images of (a) ZnO (b) CuS@Cu₂S@Au-ZnO nanosheets. (c) HRTEM images of CuS@Cu₂S@Au-ZnO nanosheets (d) TEM image of CuS@Cu₂S@Au-ZnO nanosheets and corresponding EDX elemental mapping results. Fig.2 Schematic presentation of degradation mechanism in the presence of CuS@Cu₂S@Au-ZnO nanosheets (a) under light illumination and (b) in dark environment. (c) Degradation results of various ZnO-based photocatalysts. # References [1] Kuan-Yi Kuo, Shih-Hsiu Chen, Po-Hsuan Hsiao, Jui-Teng Lee and Chia-Yun Chen, Day-night active photocatalysts obtained through effective incorporation of Au@CuxS nanoparticles onto ZnO nanowalls, Journal of Hazardous Materials 2022, 421, 126674. B. Battery and energy storage B_P01 # Polymer-derived Nitrogen-doped Carbon Materials with Hierarchically Porous Architectures toward Capacitive Performances for Lithium-ion Capacitors Mohamed M. Abdelaal^{1,2}, Tzu-Cheng Hung¹, Tai-Feng Hung^{1*} ¹Battery Research Center of Green Energy, Ming Chi University of Technology, Taiwan, ²Tabbin Institute for Metallurgical Studies (TIMS), Egypt *Corresponding Author: taifeng@mail.mcut.edu.tw # **Abstract** Lithium-ion capacitors (LICs) have gained much attention due to their capability to combine the features of batteries with supercapacitors together. Recently, hierarchical porous activated carbon (HPAC) with high specific surface area (normally more than 1000 m²/g) is known for its outstanding energy storage performances as the cathode material for LICs.[1-4] In this study, the activated carbon materials with hierarchically porous architectures and nitrogen doping (N-HPAC) were successfully prepared by the procedures reported previously.[5] The specific surface area of the resulting N-HPAC was as high as 2012 m²/g, with a microporous area of 1407 m²/g and mesoporous/external area of 605 m²/g. Even the mass-loading of a prepared electrode is up to 5.2 mg/cm², it not only revealed a high specific capacity (72 mAh/g at 0.1 A/g) and the excellent rate capability (62 mAh/g at 1 A/g) but also exhibited the Coulombic efficiency larger than 99 %. It could be attributed to their distinctive surface and structural features of the N-HPAC, leading to the remarkable capacitive performances. Consequently, the findings in this study would be beneficial for realizing the practical applicability of the N-HPAC-based electrode in the electrochemical energy-storage applications. **Keywords:** Lithium-ion capacitors, Hierarchically porous activated carbon, Nitrogen doping, Capacitive performances - [1] J. Sun, S. Yang, J. Ai, C. Yang, Q. Jia and B. Cao, ChemistrySelect, 4, 5300 (2019). - [2] B. Liu, J. Chen, B. Yang, Z. Lin, C. Zhang, Z. Zeng, M. Jiao, L. Liu, Y. Sun, R. Hou and X. Yan, *Energy Storage Mater.*, 42, 154 (2021). - [3] Z. Xu, J. Li, X. Li, Z. Chen, C. Chen, S. Ali Shah and M. Wu, *Appl. Surf. Sci.*, 565, 150528 (2021). - [4] T. Qian, Y. Huang, M. Zhang, Z. Xia, H. Liu, L. Guan, H. Hu, M. Wu, Carbon, 173 646 (2021). - [5] M.M. Abdelaal, T.C. Hung, S.G. Mohamed, C.C. Yang, H.P. Huang and T.F. Hung, *Nanomaterials*, 11, 1867 (2021). # Excellent Electrochemical active CuFe₂O₄/3D-rGO based Supercapacitor Electrodes with an Ultrahigh Specific Capacitance Dhanapal Vasu¹, Arjunan Karthi Keyan¹ Subramanian Sakthinathan^{1,} Te-Wei Chiu^{1*} ^{1*} Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan,. *Corresponding Author: tewei@ntut.edu.tw ### **Abstract** The novel and highly enormous multifunctional nanocomposites have attracted more attention because of the materials in energy and wastewater remediation treatment. In addition, growing demands for regenerative energy and electric automotive applications in recent decades. The storage devices in the electrical field such as supercapacitors attractive more applications in consumer alternative electronic products due to their excellent energy density, rapid charge/discharge time, safety, no disposable parts, and long-term operation stability [1]. In this manuscript, CuFe₂O₄ loaded 3D reduced graphene oxide (3D-rGO) nanocomposites have been prepared by an ultrasonication process. The synthesized nanocomposites were studied by different analytical studies such as X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy, and X-ray photoelectron spectroscopy. As prepared nanocomposites have exhibited an excellent surface area, high energy storage with appreciable durability. In addition, the 3D rGO enhanced conductivity, decrease agglomeration, interfacial charge transportation in the nanocomposites. These properties also playing a major role in nanocomposite's physicochemical properties. A supercapacitor with CuFe₂O₄ loaded 3D-rGO based electrodes exhibits an excellent specific capacitance of 635.5 Fg⁻¹ at ambient temperature, and a higher current density of 1 A/g, as well as a higher power density of 809.8 Wkg⁻¹. These energy density values are nearby of the commercialized Ni metal hydride capacitor [2]. As a result, intimates that the prepared nanocomposites could be protentional for the storage of energy. **Keywords**: Nanofiber, Supercapacitors, CuFe₂O₄, Specific capacitance. - [1] A. Ahmed, Ind. Eng. Chem. Res., (2021). - [2] C. Liu, Z. Yu, D. Neff, A. Zhamu, *Nano letters*, 10(12), 4863-4868 (2010). # High energetic supercapacitor electrode of CuCoO₂/P-rGO nanocomposite with ultrahigh specific capacitance Arjunan Karthi Keyan¹, Dhanapal Vasu¹, Subramanian Sakthinathan¹, Te-Wei Chiu^{1*} ¹Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC *Corresponding Author: tewei@ntut.edu.tw ### **Abstract** The three dimensional nanomaterial have received more attention in energy and environment remediation applications [1]. We present the structural and good electronic properties of CuCoO₂/P-rGO nanocomposite through the hydrothermal method [2]. The phase and surface morphology of CuCoO₂/P-rGO nanocomposite were confirmed by the various
analytical and spectroscopic techniques such as X-ray diffraction, Scanning electron microscope, high resolution transmission electron microscope and X-ray photoelectron spectroscopy. In the field of supercapacitor should be consider as quick charge and discharge time, high energy density and long life cycles. According to the prepared nanocomposite has high specific capacitance of 636.4 Fg⁻¹ at a current density of 1 Ag⁻¹ at maintained about 80% retention after 4000 cycles. Herein, addition of P-rGO has improve the surface area and CuCoO₂ catalyst improve the electron conductivity. The CuCoO₂/P-rGO electrode has excellent electrochemical performance and its suitable for supercapacitor electrodes. **Keywords:** CuCoO₂, P-rGO, Hydrothermal method, Supercapacitor. - [1] S. Sakthinathan., R. Rajakumaran., A. K. Keyan., C. L. Yu., C. F. Wu., S.Vinothini., S. M. Chen & T. W. Chiu, *RSC Adv.*, 11(26), 15856-15870 (2021). - [2] H. Bouakaz., M. Abbas., R. Brahimi., & M. Trari, *Mater. Sci. Semicond. Process.*, 136, 106132 (2021). # Performance of Molybdenum-Modified Titanium Oxide as anode for lithium-ion Battery Zhen Chong^{1*}, Jow-Lay Huang^{1,2}, Chia-Chin Chang³, Yu-Min Shen^{2**} ^{1*} Dept. of Material Science and Engineering, National Cheng Kung University, Taiwan, ² Hi-GEM Research Center, Taiwan ³ College of Environmental Sciences and Ecology, National University of Tainan, Taiwan *Presenting Author **Corresponding Author: e54077029@qs.ncku.edu.tw ### **Abstract** TiO₂ is one of environmentally friendly anode materials in lithium-ion battery having longer cycle life, better stability without producing dendrite like microstructure. However, the specific capacity (330 mAh·g⁻¹) of TiO₂ is significantly low making it undesirable for the high-end applications.[1] Therefore, modification of TiO₂ with molybdenum (Mo) is necessary to boost the capacity and the overall electrochemical properties of anode material. The specific capacity had reached ~1272.6 mAh·g⁻¹ in the first cycle and the reversible capacitance is 810 mAh·g⁻¹ at a current rate of 0.1C showing a fading of 36.3%. After 10 cycles, it still maintained a specific capacity of 578.9 mAh· g⁻¹ having a Coulombic retention efficiency of ~71.5 %. Mo-modified TiO₂ was obtained by reacting (NH₄)₂MoO₄ and TiO₂ (rutile phase and anatase phase mixed) followed by annealing at elevated temperature (700°C).[2] The future work would be to do a detail electrochemical analysis (CV, LSV, and EIS test) to determine the Li⁺ diffusion rate and electrical conductivity and in-situ XRD to explore the structural behavior of Mo@TiO₂. The high specific capacity and safety performance of Mo@TiO₂ will widen the possibility of application of TiO₂ in lithium-ion battery. Keywords: Anode material, Lithium-ion Battery, Mo-modified TiO₂ - [1] Hengbo Yin, J. Mater. Chem., 2001, 11, 1694-1730 - [2] Changtai Zhao, Adv. Energy Mater., 2017, 7, 1602880 # Development of Instant Diagnostic Technology for Hydrogen/vanadium Flow Battery Chi-Yuan Lee 1*, Chia-Hung Chen 2, Chin-Lung Hsieh 3, Yu-Chun Chen 1, Siao-Yu Chen 1 ^{1*} Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan ² HOMYTECH Global CO., LTD, Taoyuan, Taiwan ³ Institute of Nuclear Energy Research, Taoyuan, Taiwan *Corresponding Author: cylee@saturn.yzu.edu.tw ### **Abstract** The vanadium redox flow battery system is an emerging energy storage technology, it has many advantages in application, such as high efficiency, long life, high power and high safety. The latest document indicates that the hydrogen/vanadium redox flow battery has better energy density and efficiency than vanadium redox flow battery. In addition, the hydrogen concentration, electrical conductivity, voltage, current, temperature, electrolyte flow and flow channel pressure inside the hydrogen/vanadium redox flow battery will affect its performance and life. Therefore, this paper uses micro-electro-mechanical systems (MEMS) to develop a flexible 7-in-1 microsensor and embed it in the hydrogen/vanadium redox flow battery pack for real-time diagnosis, thereby obtaining optimized operating conditions and improving performance and safety. **Keywords:** Hydrogen/vanadium redox flow battery, Micro-electro-mechanical systems, Flexible 7-in-1 microsensor, Real-time diagnosis # Effect of Synthesis Routes on Nickel rich and Cobalt-free Layered Oxides Cathode for Li Ion Batteries Jen-Hao, Yang¹, Kuan-Zong, Fang², and Shu-Yi Tsai³ ¹Master student, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan ²Professor, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan ³Postdoctoral Research, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan #### **Abstract** The layered structured cathode material can provide a higher capacity and stable cycle retention, which is a desired property for lithium ion batteries. Among them, NMC composed of Ni, Mn and Co as transition metals is considered a promising positive electrode. However, because Co is slightly toxic and an expensive strategic resource, reducing the Co content and maintaining the capacitance and cycle stability are the objectives of this study. In this study, LiNi $_{0.8}$ Mn $_{0.1}$ Co $_{0.1}$ O $_{2}$ and LiNi $_{0.33}$ Mn $_{0.33}$ Fe $_{0.33}$ O $_{2}$, were investigated. The material synthesis adopts the solid-state reaction method, which is divided into one pot method and multistep method. In LiNi $_{0.8}$ Mn $_{0.1}$ Co $_{0.1}$ O $_{2}$, the initial discharge capacity of the cathode synthesized by the one pot method in the first attempt was 83.59 mAh/g. After 30 cycles, the remaining capacity is 38.13 mAh/g with 45.62% retention. The initial discharge capacity of the cathode synthesized by the multistep method is 70.40 mAh/g. After 30 cycles, the remaining capacity is 45.44 mAh/g with 64.55% retention. For $LiNi_{0.33}Mn_{0.33}Fe_{0.33}O_2$, the sample synthesized by one pot method can clearly see the phase formation of Li_2MO_3 (M is a transition metal) in the XRD pattern, while the multi-step method can inhibit the formation of Li_2MO_3 . As a result, the first charged capacity is around 140 mAh/g. The difference in capacity will be explained in light of structural and electrical properties. Keywords: Cathode, Lithium ion battery, Nickel rich, Cobalt free # Computational simulation and efficient evaluation on corrosion inhibitors for electrochemical etching on aluminum foil Xiejing Luo¹, Chaofang Dong^{1*}, Yarong Xi¹, Chenhao Ren¹, Junsheng Wu¹, Dawei Zhang¹, Xiongbo Yan¹, Yajun Xu², Pengfei Liu², Yedong He¹, Xiaogang Li¹ ¹ Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China. ² Xinjiang Joinworld Co Ltd, Xinjiang 830013, China *Corresponding Author :cfdong@ustb.edu.cn #### **Abstract** Aluminum foil is the key material for aluminum electrolytic capacitors. To increase the specific surface area and capacitance, the method of electrochemical etching on aluminum foil in solutions with low-concentration corrosion inhibitor has been widely applied [1-3]. In this study, various organic molecules as 8HQ, BTA, MBT, Citric Acid and Oleic Acid were analyzed through DFT calculations and experimental methods. The physicochemical properties of five different organic molecules were analyzed by quantum chemical calculations firstly [4-5]. Furthermore, the hydrated cation models of aluminum ion with various inhibitor molecules have been considered to compare the stability of complex models and their effects on aluminum dissolution behavior [6-8]. Besides, periodic adsorption models were performed to explore the interaction between inhibitor molecules and aluminum surface through dynamic methods [5,8]. Experimentally, the etched tunnels of aluminum foil were tested in various etching solutions and the tunnel densities were integrated respectively [1-3]. Finally, relationship between experimental characterization of etched aluminum foil and physicochemical properties of inhibitor molecules were established. The results indicate that Oleic Acid presents excellent corrosion inhibiting performance on the improvement of tunnel density as $\rho = 1.5925 \times 10^7 \, \text{cm}^{-2}$ and predicted capacitance as $C = 0.72 \, \mu \text{F cm}^{-2}$ at 520 V. **Keywords:** DFT calculations, Molecular dynamic, Materials Genome Engineering; Aluminum foil, Electrolytic capacitors - [1] C. Ban, Y. He, X. Shao, Z. Wang, Corros. Sci., 78 (2014). - [2] S.Q. Zhu, C.L. Ban, X.Q. Tao, J. Mater. ence: Mater. Electron., 26 (2015). - [3] C. Ban, Y. He, X. Shao, J. Mater. Sci. Mater. Electron., 25 (2013). - [4] I.B. Obot, D.D. Macdonald, Z.M. Gasem, Corros. Sci., 99 (2015). - [5] I. Milošev, T. Bakarič, P. Marcus, J. Electrochem. Soc., 166 (2019). - [6] O. Dagdag, Z. Safi, N. Wazzan, H. Erramli, L. Guo, J. Mol. Liq., 302 (2020). - [7] A. Xu, C. Dong, X. Wei, Y. Zhang, Phys. Status Solidi B, 255 (2018). - [8] N. Kovačević, I. Milošev, A. Kokalj, Corros. Sci., 98 (2015). # Polarization Reduction of Surface-Modified Garnet SolidElectrolytes for Solid State Li-ion Battery Applications <u>Jia-Hong Du^{1*}</u>, Shu-Yi Tsai², Kuan-Zong Fung^{1,2} 1** Dept of Materials Sci. and Engineering, National Cheng Kung University, 70101 Tainan, TAIWAN Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan *Corresponding Author: song091011@gmail.com ### **Abstract** Since the issues with global warming and climate change received great attention, the demand for renewable energy and energy storage technologies is urgently needed. Among well-known energy storage devices, it is expected that the conventional Li ion batteries using liquid electrolytes
will be gradually replaced by the solid-state lithium batteries due to their better safety features. However, challenges with solid state batteries still remain to be overcome. Among several types of inorganic solid electrolyte, Garnet-structured $Li_{6.5}La_3Zr_{1.5}Ta_{0.5}O_{12}$ (LLZTO) is found to be a good candidate with high ionic conductivity (10^{-3} - 10^{-4} S/cm) with adequate stability against pure lithium metal. However, the high interface polarization and poor wetting ability between solid electrolyte and anode has been a major concern. People have been focusing on the interface engineering and trying to solve the problems with solid-state lithium-ion batteries. Thus, the objectives of this study are using Au as interlayer to obtain better adhesion with electrolyte, suppress the interface polarization between LLZTO and electrodes and verify the effect of interlayer for reduction of interface polarization. From the results of this study, the interface polarization has reduced to below 47.71Ω -cm² based on EIS measurement from a Li/Au/LLZTO/Au/Li symmetrical cell. In addition, Li stripping/plating tests were also conducted on the same symmetric cell over 200 cycles (200hours) at 0.6mA/cm^2 current density. Very stable/consistent and minimized voltages were observed indicating a well-functioned interlayer. After 20 cycles of testing at 0.05C, the performance of Li/Au/LLZTO/LCO battery proved the effectiveness of the gold-layer film interface modification for LLZTO electrolyte. **Keywords:** solid-state lithium-ion battery, LLZTO, interfacial modification # Synthesis and Electrochemical Properties of Single-Crystal LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ Cathode for Lithium-Ion Batteries Yu-Hsuan Su^{1,2*}, Po-Wei Chi¹, Tanmoy Paul¹, Koo-Ting Chan³, Hwai-En Lin³, Phillip M. Wu⁴, Maw-Kuen Wu¹ 1* Institute of Physics, Academia Sinica, Taipei 11529, Taiwan 2 Department of Engineering and System Science, National Tsing Hua University, Taiwan 3 Department of Mechanical Engineering, National Taipei University of Technology, Taiwan 4 Institute of Materials Science and Engineering, National Taipei University of Technology, Taiwan *Corresponding Author: a810808a@gate.sinica.edu.tw #### Abstract It is necessary to develop novel cathode materials with higher energy density, longer cycle life and more reliable safety to meet the market demands for Li-ion batteries [1-5]. In this connection, the capability of layered-(Li_{1+x}(Ni_xCo_zMn_z)_wO₂) NCM can be enhanced by working on high potential (> 4.3 V), but usually it leads to poor cycling performance over numerous charged-discharged cycles. The capacity fading in NCM is caused by increasing interfacial resistance and the formation of insulated phase during the charge/discharge processes. To mitigate the problems, single-crystalline NCM cathodes have attracted attention due to their robust morphological integrity. In this study, single crystalline LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ (SC-523) and polycrystalline LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂ (PC-523) were prepared at lower temperatures via one-step synthesis process. The X-ray diffraction patterns, resemble with α -NaFeO₂ layer structure (Space Group R-3m) for both samples, without exhibiting any impurity phase and shifting in Bragg peak position. The visual comparison of SC-523 and PC-523 is observed by SEM. The morphology of PC-523 sample is consist of micron-sized secondary particles along with agglomerated nano-sized primary particles. In contrast, SC-523 sample consists of larger and single-standing primary particles. The average particle size of SC-523 and PC-523 samples are 4 um and 12 um, respectively as confirmed by SEM analysis. The electrochemical behavior of both samples are thoroughly investigated under different high voltages of 4.2 V, 4.4 V, 4.6 V, 4.8 V, and 5 V, respectively. Furthermore, the capacity retention of SC-523 sample after 100 cycles is maintained up to 90%, while for PC-523 sample it is only 70% at 1 C within 3.0-4.6 V (vs. Li/Li⁺) limit. The high capacity retention for SC-523 sample can be attributed due to improved morphological moieties. Keywords: Single crystalline, LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂, Cathode, Lithium-ion Battery - [1] P. Chandan et al. Commun. Chem. 2, 120 (2019) - [2] Z. Zhong et al. Mater. Sci. **55**, 2913-2922 (2020).S. Klein et al. J. Mater. Chem. A, **9**, 7546-7555 (2021) - [3] T. Paul et at. Sci Rep 11, 12624 (2021) - [4] K. H. Su et at. Mater. Today Phys. **18**, 100373 (2021) # Characterization of spinel cathode material for advanced lithium-ion batteries Zih-Heng Hsieh², Kuan-Zong, Fung^{1,2}, and Shu-Yi Tsai² ¹Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan ²Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan ### **Abstract** LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ is one of the most promising cathode materials for use in either next generation lithium-ion batteries or all solid-state batteries, which provides high working voltage and cyclic stability. Since this material does not contain cobalt, it is environmentally friendly compared to other cathode materials. A two-steps solid-state synthesis method was used for synthesis of single-phase 4.7 V LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ (LNMO) spinel. In comparison to one-pot method, two-steps process which was based on formation of single-phase nickel manganese oxide followed by subsequent lithiation. As a result, reflections of LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ were observed at temperatures of as low as 400°C. During this lithiation process, migration of transition metal ions (Ni/Mn) from tetrahedral 8a sites (in NMO) toward octahedral 16d site occurred, which can be proved by the emergence of spinel peaks from XRD patterns. The resultant spinel oxide displayed 123.63 mAh/g discharge capacity for the first cycle, a 97% columbic efficiency and retention of 76% in discharge capacity after 85 cycles at room temperature. Keywords: Cathode, Lithium ion battery, Spinel, Cobalt free material # Effect of concentration on performance of ZrO₂ nanoparticle electrochemical in Vanadium Redox Flow Batteries Yi-Hung Wang^{1*}, Ya-Chen Tsai ¹, Wei-Ning Hsieh¹, I-Ming Hung^{1,2}, Cheng-Yeou Wu³ ¹Department of Chemical Engineering and Materials Science, Yuan Ze University ²Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan ³Taipower Research Institute, Taiwan Power Company *Corresponding Author: s1105204@mail.yzu.edu.tw #### **Abstract** Zirconium oxide (ZrO_2) acts as the electrode material for all-vanadium redox flow battery (VRFB). From the result of thermogravimetric analysis, it is found that the content of attached ZrO_2 is about 3.59wt%. Using field emission scanning electron microscope (FE-SEM) and energy dispersive detector (EDS) analysis, it is found that the graphite felt has surface and oxygen particles on the surface. By X-ray diffraction analysis (XRD), the particles contained two-phase ZrO_2 , monoclinic crystal and tetragonal crystal. The specific surface area of the resulting the graphite felt modified by ZrO_2 nanoparticles (ZrO_2/GF) was as high as 29.34 m²/g. The electrochemical characteristics of graphite felt were studied by cyclic voltammetry(CV). The oxidation-reduction potential difference of ZrO_2/GF was 0.33 V at 10 mVs-1, which was lower than that of the unmodified graphite felt electrode (0.62 V) and the resistance of charge transfer were decreased from 3.31 Ω to 0.33 Ω . The result shows the ZrO_2 exhibits excellent electrochemical properties than unmodified graphite felt electrode because the ZrO_2 can provide more active site which toward VO_2^{2+}/VO_2^{+} redox reaction. Keywords: Vanadium redox flow battery, Graphite felt, Zirconium oxide # Synthesis and Properties of Li₂MnO₃-LiMn_{1/3}Co_{1/3}Ni_{1/3}O₂ Cathode Materials for Lithium-Ion Battery Debabrata Mohanty^{1*}, Jing-Yu Lai, Pao-Wei Ou¹, I-Ming Hung¹² ^{1*} Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ²Hierarchical Green-Energy Materials Research Center, National Cheng Kung University ^{*}Corresponding Author: s1105220@mail.yzu.edu.tw ### **Abstract** In this study, the cathode materials $LiCoO_2$, $LiNiO_2$, $LiMnO_2$ are used as single-phase layered structure to improve the solid solution x $LiMnO_3(1-x)$ $LiMO_2$ (M=Ni, Co, Mn) composed of two-phase layered structure, allowing for more Li-ions to be deintercalated and improved charge/discharge capacity. The crystallinity becomes more complete with excess lithium concentration more than 7.5wt%, and the c/a values of the four additives are all greater than 4.9, suggesting that the layered organization structure is good and apparent, as shown by the XRD images. The powders containing 5%, 7.5%, 10% and 12.5% excess lithium had agglomeration, a rough surface, and substantial particle variations, as seen in the SEM image. The cathode material has a specific discharge capacity of 111.15mAhg⁻¹ and a coulombic efficiency of 65 percent when 10wt% extra lithium was added to $0.5Li_2MnO_30.5LiMn_{1/3}Co_{1/3}Ni_{1/3}O_2$. Keywords: cathode material, Li-ions, two-phase layered structure # Synthesis and Material Characterisic of Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ Solid Electrolytes for Lithium-ion Battery Jing-Yu Lai 1*, Jie-Yu Liao 1, I-Ming Hung 1 2 ^{1*} Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ²Hierarchical Green-Energy Materials Research Center, National Cheng Kung University ^{*}Corresponding Author: s1071146@mail.yzu.edu.tw ### **Abstract** During charge and discharge, the lithium ion battery's liquid electrolyte is prone to forming lithium dendrites, resulting in a short circuit. As a result, the pure phase Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ (LATP) solid electrolyte material was successfully
synthesized using the sol-gel technique in this work, and the influence of various temperatures on its electrochemical performance was observed. Software estimated the LATP lattice constant and AlPO₄ concentration based on XRD patterns. When sintered at 850°C, AlPO₄ content was found to be 11.43 %, and when sintered at 900°C, it was found to be 20.43 percent. The SEM image then indicates that when sintered to 850°C, the surface particle structure can still be visible, but when sintered to 900°C, the surface particle structure is molten and compact. The particle size distribution is rather homogeneous, with the primary particle distribution extending from 200 nm to 400 nm, and the peak width of DLS is small. Finally, it can be observed from the EIS findings that when the test temperature rises, the overall impedance lowers, and the ionic conductivity rises. **Keywords:** solid electrolyte, sol-gel, lithium ion battery # Microwave co-precipitation synthesis and electrochemical characterization of 0.4Li₂MnO₃-0.6LiMn_{1/3}Co_{1/3}Ni_{1/3}O₂ as Cathode Material for lithium-ion battery Jing-Yu Lai 1*, Ming-Yan Chen 1, I-Ming Hung 12 Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan Hierarchical Green-Energy Materials Research Center, National Cheng Kung University *Corresponding Author: s1071146@mail.yzu.edu.tw ### **Abstract** The cathode material of x LiMnO₃(1-x) LiMO₂ (M=Ni, Co, Mn) with a double-layered structure was synthesized in this study using the microwave co-precipitation technique, resulting in more Liions being deintercalated and increased charge/discharge capacity. The lattice volume at 60, 70, 80, 90, and 100°C did not change substantially, and the c/a value was larger than 4.9, indicating that it had an excellent lamellar structure, according to XRD and software calculations. The disparity between large and small particles decreases as the reaction temperature rises, as can be seen in the SEM image, and the average particle size shows that as the reaction temperature rises, particles tend to get smaller. The battery's discharge capacity at 90°C is 177.19 mAhg⁻¹ at 0.1C rate. The results demonstrate that when the reaction temperature rises, the material's stability rises as well. Keywords: microwave co-precipitation technique, double-layered structure, cathode material E. Energy efficiency technologies and applications E P01 # The effects of selectively and randomly deposited Ag nanoparticles on the piezocatalytic activity of BaTiO₃ nanocubes/cuboids Enzhu Lin¹, Zihan Kang¹, Jiang Wu², Rui Huang³, Ni Qin^{4, *}, Dinghua Bao^{5, *} PhD student, School of Materials Science and Engineering, Sun Yat-Sen University Post-doctoral, School of Materials Science and Engineering, Sun Yat-Sen University Master student, School of Materials Science and Engineering, Sun Yat-Sen University Associated professor, School of Materials Science and Engineering, Sun Yat-Sen University Professor, School of Materials Science and Engineering, Sun Yat-Sen University *Corresponding Author #### Abstract The selective deposition of noble metals on catalysts is an attractive modification method for improving catalytic efficiency. However, it is sometimes hard to achieve when facet energies of nanocatalysts show negligible differences. Here, we reported a piezoelectrochemical method which can realize the selective deposition of Ag nanoparticles on the positively polar end of {001}-enclosed BaTiO₃ (BTO) nanocubes/cuboids. Furthermore, BTO nanocubes/cuboids with selectively-deposited Ag nanoparticles show approximately 2 times higher piezocatalytic activity than those with randomly-loaded Ag nanoparticles, and much higher than pure BTO nanocubes/cuboids. The piezocatalytic mechanism revealed that the Ag nanoparticles deposited on positively polar end act as "fast lanes" for electrons to transfer to catalysts/solution interfaces, while those loaded on negatively polar end serve as holes trappers hindering ·OH formation and pollutant degradation. This work confirms an efficient way to improve piezocatalytic performance and provides an insightful discussion of piezocatalytic mechanism. **Keywords:** BaTiO₃ nanocubes/cuboids; Selective deposition; Piezocatalysis; Steady-state approximation; Kinetics E P02 ### Development of nano-sized Fe-based powder for Inductance Tung-Wei Chang 1*, Ren-Shuo Chang 1, I-Ming Hung 12 ^{1*} Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ²Hierarchical Green-Energy Materials Research Center, National Cheng Kung University ^{*}Corresponding Author: s1105220@mail.yzu.edu.tw #### Abstract In recent years, passive components have set off an upsurge in the world. Nano-scale metal particles, on the other hand, are not extensively employed in passive components nowadays. In the nanoparticle production process, the liquid phase reduction technique gives the best results. The impact of grain size or the hysteresis curve in varied PVP concentrations is demonstrated in this study. It is shown to be compatible with the Cubic structure of Fe using XRD analysis. It is discovered that there is an impurity phase after adding the iron powder coated with PVP (orthorhombic Fe₃C). The iron particle size is around 100 nm, and a chain structure can also be detected by SEM, and the iron particle size of PVP (Fe-15PVP) coated with 15 wt% is about 185 nm. The saturation magnetic moment density (Ms) of Fe is 145.8 emu/g, whereas the Ms of Fe-15PVP is 131.6 emu/g, according to SQUID analysis. The reason for this is that Fe₃C is a non-magnetic substance, which causes the saturation magnetic moment density to drop. **Keywords:** Passive component, Inductance, PVP, magnetic material E P03 # Preparation of Nitrogen-doped BaTiO₃ Thin Films on TiN/Si by Plasma Electrolytic Oxidation Chun.-Cheng. Chang, Fu.-Hsing. Lu* Department of Materials Science and Engineering. National Chung Hsing University, Taichung 402, Taiwan, *Corresponding Author: fhlu@nchu.edu.tw #### **Abstract** Perovskite barium titanate has received extensive attention for its excellent dielectric properties. However, its wide bandgap hinders the application for a promising catalyst. Nitrogen doping has been proved to be an effective approach to decrease the bandgap, which may be applied to visible light catalysts. In this work, an innovative plasma electrolytic oxidation (PEO) method with a DC power source was used to produce the films. A potentiostatic mode at 75 V was applied to the as-deposited TIN films over Si substrates, which acted as working electrodes and a nitrogen doping source, while Pt plates were counter electrodes. The PEO process was conducted at 70 in the mixed solutions of 0.5 M Ba (CH₃COO)₂ and 2 M NaOH. As-deposited Ti films over Si without any nitrogen source was also used as a reference. X-ray diffraction patterns show that obtained oxides with and without nitrogen doping all had cubic BaTiO₃ (BTO) and additional TiO₂ phases. The measured lattice parameter of N-BTO (0.4060±0.0002 nm) was very similar to that of BTO (0.4063±0.0002 nm). Apparently, slight doping could not cause the apparent lattice changes. The presence of TiO₂ phase may be due to the intermediate phase before forming the final product BTO. Field-emission scanning electron microscopy (FE-SEM) revealed that the films were porous layered structures. The average growth rate of N-BTO over TiN/Si was much higher than that of BTO over Ti/Si. Moreover, the XPS spectra show a small amount of nitrogen doping (1.2 at%) for N-BTO. From the UV-visible reflection spectra and the calculated Tauc plot, the bandgap decreased from 2.99 eV for BTO to 2.94 eV for N-BTO. This demonstrates the PEO method with TiN film electrodes is promising to produce nitrogendoped perovskite barium titanate. Keywords: Plasma electrolytic oxidation, N-doped BaTiO₃, TiN, films, bandgap #### References - [1] W.-Yu. Tsai, C.-J. Yang, J.-L Zeng, F.-H. Lu, Surf. Coat. Technol. 259 (2014) 297-301. - [2] G.-W. Lin, Y.-H. Huang, W. Tseng, F.-H. Lu, Ceram. Int. 45(2019) 22506-22512. - [3] P. Long, C. Chen, D. Pang, X. Liu, Z. Yi, J Am. Ceram. Soc. 102(2019) 1741-1747. - [4] J. Xu, Y. Wei, Y. Huang, J. Wang, X. Zheng, Z. Sun, L. Fan, J. Wu, Ceram. Int. 40(2014) 10583-10591. - [5] J. Cao, Y. Ji, C. Tian, Z. Yi, J. Alloys Compd. 615 (2014) 243-248. E P04 ### Preparation of CeO₂-CuCrO₂ composite by electrospinning method Kai-Chun Hsu, Heng-Jyun Lei, Chung-Lun Yu, Te-Wei Chiu^{1*} ¹ Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, *Corresponding Author: tewei@ntut.edu.tw #### **Abstract** As a result of the energy crisis in recent years, we have been searching for various alternative energy to solve this problem. Although hydrogen is potential energy for the community, hydrogen transportation is a challenge that should be overcome. Therefore, to produce hydrogen nearby the storage equipment could ignore the above problem. Also, the copper-based material is attracting more attention in the industry. In this study, the CeO₂ nanofibers were prepared by the electrospinning method. Due to the adsorption of Cu-Cr-O precursor was difficult initiation on the surface of CeO₂ nanofibers. Tetraethoxysilane (TEOS) was used to coat trace amounts of SiO₂ on the CeO₂ nanofibers' surface to improve the interface between CuCrO₂ and CeO₂. After the modification, the CeO₂ nanofibers were immersed into Cu-Cr-O precursor and annealing at vacuum to form CuCrO₂ particles on of CeO₂ nanofibers' surface. The microstructure of the CeO₂-CuCrO₂ catalyst was analyzed through the SEM, TEM, and EDS characterization and confirm the core and particles were CeO₂ and CuCrO₂. Furthermore, the CeO₂-CuCrO₂ catalyst exhibited the highest hydrogen production by the methanol steam reforming method, which could reach 1335.16 ml STP min⁻¹ g-cat⁻¹ at 500°C. According to the result of the hydrogen production application, the convenience and safety of the
process would have a significant industrial and economic impact. **Keywords:** CeO₂-CuCrO₂, Electrospinning, Microstructure, Methanol steam reforming, Hydrogen production. E_P05 # Porous Structure ZnO-ZnFe₂O₄ Catalyst Applied by Hydrogen from Methanol Steam Reforming Bing-Zhen Hsu¹, Chung-Lun Yu², *Te-Wei Chiu³, Bing-Sheng Yu³ ¹Master student, Institute of Materials Science and Engineering, National Taipei University of Technology ²PhD student, Institute of Materials Science and Engineering, National Taipei University of Technology ³Professor, Department of Materials and Mineral Resources Engineering, National Taipei University of Technology *Corresponding Author #### Abstract Due to the rapid development of science and technology, energy had gradually been an indispensable place in human life. Because of this, countries consume energy uncontrollably, causing an energy crisis and the emergence of extreme global warming climates. Effective alternative energy became the consensus of everyone, and hydrogen (H₂) was regarded as potential alternative renewable energy. In this research, ZnFe₂O₄ and ZnO-ZnFe₂O₄ catalysts with spinel structure were prepared by the glycine combustion method, which was used for methanol steam reforming (SRM). According to the SEM and TEM, ZnFe₂O₄ and ZnO- ZnFe₂O₄ nanopowders catalysts had a porous structure like a coral reef. Besides, the measurement of the BET specific surface area, when the G/N ratio was 1.5, the specific surface area at 5.6680 m²/g (ZnFe₂O₄) and 8.2073 m²/g (ZnO-ZnFe₂O₄). When the G/N ratio was 1.7, the specific surface area at 6.0390 m²/g (ZnFe₂O₄) and 11.6724 m²/g (ZnO-ZnFe₂O₄). So the Spinel structure was not greatly affected by the G/N ratio. On the other hand, ZnFe₂O₄ and ZnO-ZnFe₂O₄ were found to have the best catalytic effect at 450°C and 500°C. In particular, the highest H₂ generation rate of ZnO-ZnFe₂O₄ at 500°C was 6663.48 (ml STP min⁻¹ g-cat⁻¹). Therefore, we hoped that studying ZnFe₂O₄ (pure phase spinel) and ZnO-ZnFe₂O₄ (nano-composite powders) to investigate the high catalytic activity of spinel and good dispersibility of ZnO to improve the specific surface area of the catalyst. The catalyst was going to be applied in methanol steam reforming in the future. **Keywords:** Glycine Nitrate Process, Spinel structure, ZnO-ZnFe₂O₄, Hydrogen production, Steam reforming of Methanol F. Fuel cells F P01 ### Flexible Integrated Microsensor for In-situ Monitoring of Proton Battery Chi-Yuan Lee 1*, Chia-Hung Chen 2, Yun-Hsiu Chien 1, Yi-Lun Chien 1 ^{1*} Department of Mechanical Engineering, Yuan Ze Fuel Cell Center, Yuan Ze University, Taoyuan, Taiwan ² HOMYTECH Global CO., LTD, Taoyuan, Taiwan *Corresponding Author:cylee@saturn.yzu.edu.tw #### **Abstract** The proton battery has water electrolysis, proton storage and discharging functions simultaneously, and it can be manufactured without expensive metals. Therefore, this paper uses micro-electro-mechanical systems (MEMS) technology to develop a flexible integrated microsensor, which is embedded in the proton battery to obtain important physical parameters instantly, so that the condition inside the proton battery can be mastered more precisely, so as to prolong the battery life and enhance the proton battery performance. Keywords: Proton battery, MEMS, Flexible integrated microsensor, In-situ monitoring # Correlation between NiFe₂O₄ Cathode Thickness and Hydrogen Production Efficiency for Solid Oxide Electrolyzer Cells Wei-Cheng Chin1, Yi-Hsuan Lee1* ^{1*} Department of Mechanical Engineering, National Taipei University of Technology, Taiwan *Corresponding Author: yhlee@mail.ntut.edu.tw #### **Abstract** In this study, $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-}$ (LSGM) was applied as the electrolyte. NiFe₂O₄ and Ni–SDC were applied as the cathode materials for solid oxide electrolyzer cell (SOEC). The different thicknesses of cathode material (NiFe₂O₄) was utilized to observed cell performances under 20% H₂O–80% N₂ atmosphere at 800°C. The correlations between the faradaic efficiency of hydrogen production and cathodic thickness were observed. According to I–V curve results, cell performances could be considered as similar regardless of thickness. In the case of 18 m-thickness sample, the faradaic efficiency of hydrogen production increased with increasing current density. On the other hand, in the case of 8 μ m-thickness sample, the faradaic efficiency of hydrogen production maintained constant after a current density above 100 mA/cm². The results are similar with previous research [1]. Furthermore, comparing with the thiner-thickness sample, the efficiency was significantly high with the 18 m-thickness sample under high current density condition. It is indicated that insufficient reaction areas induced to lower hydrogen generation efficiency. **Keywords:** Mechanism of hydrogen production, Solid oxide electrolyzer cell (SOEC), Spinel cathode materials #### References [1] K.-T. Wu, T. Ishihara, Solid State Ionics 329 (2019) 46–51. ### **Hydrogen Storage Alloy Tanks for Fuel Cell Assisted Bicycles** Chia-Chieh Shen^{1*,2}, Kuan-Lin Chen¹ ^{1*} Department of Mechanical Engineering, Yuan Ze University, Taiwan ²Fuel Cell Center, Yuan Ze University, Taiwan *Corresponding Author: ccshen@saturn.yzu.edu.tw #### **Abstract** This study is focused on the development of hydrogen storage tank made of 6061-T6 aluminum alloy for fuel cell assisted bicycle application. The hydrogen storage method uses commercial MmNi₅based alloys with 900 grams to storage hydrogen gas. The diameter and length of the aluminum alloy tank are 63.4 mm and 240 mm, respectively. The tank was filled with an aluminum honeycomb structure to enhance the internal radial heat transfer of the tank [1]. The ADAM-4000 series acquisition cards were used to acquire the hydrogen charging and discharging behaviors such as temperature, pressure, and hydrogen flow responses. Experimental results showed that the MmNi₅based alloys in the tank can absorb 108 liters of hydrogen at room temperature, which is equivalent to a hydrogen content of 0.9 wt% in the MmNi₅-based alloys. Considering the weights of the tank and honeycomb without the filter, valves, H₂ regulator, the systematic hydrogen content in the tank was 0.6 wt%. To simulate the hydrogen tank employed in the fuel cell, two discharging hydrogen flow rates of 500 ml/min and 1000 ml/min at 50°C were tested, in which the H₂ tank was immersed in a water heating reservoir at 50°C to simulate the operation condition of the fuel cell. During the both discharging rates, discharging hydrogen pressures were higher than 0.1 MPa. Hydrogen discharge rates at 500 ml/min and 1000 ml/min of the hydrogen tank were stable for approximately 170 min. and 85 min., respectively. The hydrogen tank developed this study presents theoretical potentials of electricity outputs of 45 We and 90 We based one the hydrogen energy conversion efficiency of 50% using fuel cells supplied at hydrogen rates of 500 ml/min and 1000 ml/min, respectively. Figure 1. H₂ pressure and flow rate changes during discharging process. **Keywords:** Metal hydride, Fuel cell, Energy storage, Heat transfer ### References [1] M. Bhouri, J. Goyette, B.J. Hardy, D. L. Anton, Honeycomb metallic structure for improving heat exchange in hydrogen storage system, *International Journal of Hydrogen Energy*, 36 (2011) 6723-6738. ### Preparation of Porous Zirconia by Ceramic Photo-polymerization Process Wei-I Yen, Hsin-Chieh Hsieh, Ying-Chen Lin, Sih-Yu Chen, Yen-Yu Chen* Department of Chemical and Materials Engineering, Chinese Culture University, Taiwan *Corresponding Author: cyy15@ulive.pccu.edu.tw #### **Abstract** In this study, porous zirconia were developed by a ceramic photo-polymerization process. The yttria-stablished zirconia (YSZ) powder was as the starting material, and the photoinitiator-added acrylate monomer as the carrier, after well-dispersed by a ball miller, the precursors were photocured by UV light with a wavelength of 405 nm, and the green compacts can be prepared. After thermal pyrolysis and sintering, the porous YSZ samples can be obtained. The as-prepared porous YSZ samples were further analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), and Archimedes method to understand the microstructures, crystal phases, and calculate the bulk density, as well as porosities. The results show that porous YSZ sample can be prepared after pyrolysis and sintered at 1500°C. Otherwise, the recipes were also employed on a DLP (digital light process) 3D printer to print a basic flow-channel plate of YSZ catalyst carrier in this study. The rheological behaviors of the precursors were also analyzed and compared with that of the commercial DLP resins. Keywords: zirconia, porous materials, photo-polymerization, additive manufacture, DLP ## Effect of Dual Phases on Ionic Conduction of Consisting of Doped Ceria and Carbonates Jhih-Yu Tang^{1*}, Kuan-Zong Fung^{1,2}, Shu-Yi Tsai^{1,2}, Jarosław Milewski³, Tomasz Wejrzanowski⁴ Department of Materials Science and Engineering, National Cheng Kung University, 70101 Tainan, TAIWAN Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, 70101 Tainan, TAIWAN Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, POL AND ⁴ Faculty of Material Science Engineering, Warsaw University of Technology, 00-665 Warsaw, POLAND *Corresponding Author: *jacky71609@gmail.com* #### Abstract Electrolytes based on a dual-phase oxygen ion conductors and carbonates have received great attention for high temperature fuel cell application. For instance, enhanced conduction was observed when the oxygen ion conductor, doped ceria was directly mixed with Li/Na carbonates. It is expected the electrical conduction of composite electrolyte is contributed by the migration of oxygen ions in solid state and carbonate ions in liquid state.
It was observed that the dual phase electrolytes exhibit coionic ($O^{=}/CO_3^{=}$) conductors during fuel cell operation under the $H_2/$ air atmosphere. It is expected that highly mobile ions at the interface between doped ceria and carbonates may further contribute to the high conductivity of the composite electrolyte. In other words, the super-ionic phase might exist at the interface between doped ceria and carbonates, where the defect concentrations are high. In this study, the electrical conduction of composite electrolytes with various types of microstructures were evaluated at temperatures ranging from 300 to 700 . The composite samples were first prepared by direct mixing of doped ceria and carbonate powders. For 2nd microstructure design, the carbonates were infiltrated into porous ceria substrates at 600 . SEM, XRD, and Electrochemical Impedance. Spectroscopy were employed to conduct microstructural, structural and impedance analyses. The electrical conduction behavior of composite electrolytes will be rationalized based on the pore size, pore distribution and interface area. Keywords: Fuel Cell, Composite Electrolyte, Intermediate Temperature Solid Oxide Fuel Cells # A Modified Solid-State Reaction Method to Synthesize Proton-Conducting BaCe_{0.5}Zr_{0.3}Y_{0.2}O_{3-δ} Electrolyte with Improved Sinterability Yuan-Jie Tsai 1, Kuan-Zong Fung1,2*, Shu-Yi Tsai1,2 Department of Materials Science and Engineering, National Cheng Kung University, 70101 Tainan, TAIWAN Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, 70101 Tainan, TAIWAN *Corresponding Author: s5764ru1@gmail.com #### **Abstract** In this study, $BaCe_{0.5}Zr_{0.3}Y_{0.2}O_{3-\delta}$ electrolyte was studied as a high proton conducting electrolyte for proton-solid oxide electrolyzers (P-SOEC), and a new synthesis method with an improved solid-phase reaction method was proposed. $BaCe_{0.5}Zr_{0.3}Y_{0.2}O_{3-\delta}$ powder was synthesized at a temperature as low as 1200°C. The temperature is much lower than the temperature used in the traditional solid-state reaction method (1400°C). Such temperature is also comparable to that used for the sol-gel process. The powder made by this method can obtain the dense ceramics with a relative density of higher than 90% at 1400°C without adding a sintering aid. In addition, adding small amount of sintering aid (ZnO) can obtain a ceramic with relative density more than 97%, which is higher than the reported results of undoped BCZY proton conductor. In addition, $La_{1.2}Sr_{0.8}NiO_{4-\delta}$ was used as the air electrode. X-ray diffraction (XRD) results show that the perovskite structure BCZY and Ruddlesden-Popper structured LSN coexist. No additional second phase impurity phase was observed. **Keywords:** Proton conductor,BaZr $_{0.5}$ Ce $_{0.3}$ Y $_{0.2}$ O $_{3-\delta}$, Sintering aid, Calcined temperature, SOEC BaCe $_{0.5}$ Zr $_{0.3}$ Y $_{0.2}$ O $_{3-\delta}$ ### Nd-doped LSCF nano-fibrous cathode for proton-conducting solid oxide fuel cells W. Y. Huang¹, K. R Lee¹, Jason S. C. Jang¹, J. C. Lin¹, I. M. Hung², C. J. Tseng³, <u>S. W. Lee^{1*}</u> ^{1*}Institute of Materials Science and Engineering, National Central University, Taiwan ²Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ³Department of Mechanical Engineering, National Central University, Taiwan *Corresponding Author: swlee@g.ncu.edu.tw #### **Abstract** The electrochemical performances of the solid oxide fuel cells (SOFC) fabricated with Nd-doped LSCF nano-fibrous cathode perovskite cathodes, thin BCZY electrolytes, and BCZY-Ni anodes by tape casting, spin coating, and co-firing are evaluated at 600-800 °C. Material analysis, such as SEM, TEM, and XRD, confirm that no detectable second phase remains in the calcined Nd-doped LSCF nanofibers, indicating that the electrospun nanofibers have good compatibility with the fabrication of anodesupported fuel cells in this study. It can be clearly seen that the Nd-doped LSCF nano-fibrous cathode is highly porous and adhered well to the BCZY electrolyte. Fuel cell testing with the Nd-doped LSCF nano-fibrous cathode exhibits a maximum power density of ~580.0 mW/cm² at 800 °C, which is significantly higher than those of cells with a powder-derived LSCF cathode or a LSCF nano-fibrous cathode. The significantly lower polarization resistance elements extracted from electrochemical impedance spectroscopy (EIS) further suggest that the Nd-doped LSCF nano-fibrous cathode has superior catalytic activity for the oxygen reduction reaction and better oxygen ionic transport in the cathode reactions. The performance improvement of Nd-doped LSCF nano-fibrous cathode can be explained in terms of trade-off between electrocatalytic activity, oxygen ionic and electronic conductivity of the Nd-doped LSCF nanofibers. This study shows that Nd-doped LSCF nanofibers would be a promising cathode material for proton-conducting solid oxide fuel cells. **Keywords:** Nd-doped LSCF, nano-fiber, cathode, oxygen reduction reaction, P-SOFC. #### References - [1] Q. Li, L.P. Sun, H. Zhao, H.L. Wang, L.H. Huo, A. Rougier, S. Fourcade, J.C. Grenier, J. Power Sources 263 (2014) 125-129. - [2] L.Q. Fan, Y.P. Xiong, L.B. Liu, Y.W. Wang, H. Kishimoto, K. Yamaji, T. Horita, J. Power Sources 265 (2014) 125-131. ### **Small Fuel Cell Powered Vehicle** Chia-Chieh Shen^{1*,2}, Li Qun Hu, Shen Ta Wei¹ ^{1*} Department of Mechanical Engineering, Yuan Ze University, Taiwan ²Fuel Cell Center, Yuan Ze University, Taiwan *Corresponding Author: ccshen@saturn.yzu.edu.tw #### **Abstract** The small self-propelled fuel cell vehicle (FCV) operated by the Arduino program was studied to develop innovative fuel cell teaching aided tools. Based on the experimental results, it can automatically drive along the black ellipse path, indicating that the small vehicle has the ability to smart propel. The fuel cell efficiency is about 21.5%. The vehicle's velocity is 0.7 km/hr. The H₂ used in the small self-propelled FCV can be supplied from the energy storage of power-to-H₂ technology. The clean and smart self-propelled FCV developed here could act as a useful teaching aided tool to educate public and major educational institutions for the development of fuel cell and energy storage technologies. Figure 2. Block diagram of the small self-propelled FCV. Orange arrow as hydrogen flow direction; blue arrow as current flow direction; green dashed arrow as the signal direction. **Keywords:** Fuel Cell, Energy storage, Self-propelled, Sensor, Arduino. #### References [1] J.J. Huang, D.Y. Wang, Development of fuel-cell-powered electric bicycle 2004, *Journal of Power Sources*, 133 (2004) 223-228. # Intermediate temperature solid oxide fuel cell with nanoscale electrodes fabricated by one-step sintering technology Shiyi Luo (Master student), Fan-LiangDong Fan* ¹College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China *Corresponding Author #### **Abstract** Solid oxide fuel cell prepared by one-step technology could significantly reduce the cell fabrication cost and energy consumption. the dedicated low temperature sintering compared with conventional super high temperature (\geq 1300 oC) allows the application of nanoscale electrode with improved electrode activity. In this work, samarium -doped ceria (SDC) with doping of 2-5 mol% of lithium element was synthesized by co-precipitation. the addition of Lithium element served as the sintering aid to dramatically reduce the electrolyte sintering temperature as low as 900 oC based on the XRD and SEM studied. Its ionic conductivity was investigated by the electrochemical impedance spectroscopy (EIS) technique Simultaneously, nanosacle porous ceramic Ni-SDC anode and perovskite oxide cathode were fabricated by the co-precipitation and with a general cotton as templet, and co-assembled to the lithium doped electrolyte in one step sintering process Currently, the electrolyte-supported solid oxide fuel cell gave a peak power density of 111.8 mW·cm⁻² at 700 °C with the whole cell sintered at 1000 oC for 6 hours. The work proposes ia reliable and feasible for fabricate high performance SOFC at the reduced temperatures. **Keywords:** Solid oxide fuel cell; one step sintering; Porousnanoscale electrode; Sinter addictive # Enhancement of Oxygen Reduction Reaction Process of Cobalt Based Cathode in Solid Oxide Fuel Cell Yanpu Li (Master student), Liangdong Fan* College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China *Corresponding Author #### **Abstract** Attracted by the triple (oxygen ion, proton and electron) conductivity and excellent oxygen reduction activity, $BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$ (BCFZY) is a emergent cathode material in protonic ceramic fuel cells (PCFCs). However, its electrocatalytic activity can be further improved and operational stability under practical fuel cell condition is still bid challenge. In this work, we take BCFZY as cathode and composite with gadolinium-doped ceria (GDC) to improve oxygen reduction reaction performance. By comparison the electrochemical performance of symmetrical and single cell, with different cathodes, we find that the ion transport is the rate determining process on BCFZY cathode, and when GDC was put in, the oxygen diffusion becomes the main process for the oxygen reduction reaction (ORR). And the peak power density of BCFZY based single cell is $1.02W/cm^2$, which is improved by 20% to $1.22W/cm^2$ with the composed cathode BCFZY+GDC). **Keywords:** Solid oxide fuel cell; $BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$; Composite electrode; oxygen reduction reaction ### Preparation and Characterization of Y_xBa_{2-x}Co₂O_{5+δ} Cathode Material for Solid Oxide Fuel Cell Azam Khan^{1*}, Ko-Yun Chao, Zheng-An Wang¹,I-Ming Hung¹² ^{1*} Department of Chemical Engineering and
Materials Science, Yuan Ze University, Taiwan, ² Hierarchical Green-Energy Materials Research Center, National Cheng Kung University *Corresponding Author: s1105222@mail.yzu.edu.tw #### **Abstract** This experiment used $Y_{0.9}Ba_{1.1}Co_2O_{5+\delta}$ (YBCO) cathode powder, and the conductivity and oxygen vacancy concentration of this cathode material will be enhanced further by altering the proportion of Yttrium and Barium at the A-site position, through the adjustment of its valence. In two parts, the electrochemical characteristics of this material doping applied to SOFC are examined. In the XRD analysis graph, $Y_{0.9}Ba_{1.1}Co_2O_{5+\delta}$ (JCPDs 46-0642) and Y_2O_3 (JCPDs 01-0831) were identified in samples with low Y^{3+} concentration and samples with high Y^{3+} content, respectively. In the reactivity test of sintering at 950°C capacitive, the $Y_{0.98}(CoO_3)$ impurity phase is produced, and the $Y_{0.9}Ba_{1.1}Co_2O_{5+\delta}-Sm_{0.2}Ce_{0.8}O_{2-\delta}$ composite electrode has a favorable chemical phase. The SEM image shows that $Y_{0.9}Ba_{1.1}Co_2O_{5+\delta}$ is sintered at a high temperature, resulting in a structure with homogeneous pores. SDC is uniformly distributed throughout the material and adheres well to the dense $Sm_{0.2}Ce_{0.8}O_{2-\delta}$ electrolyte layer. It has the lowest impedance value of 0.057 cm² according to the AC impedance study. The thermal expansion coefficient of the cathode material may be successfully decreased to 13.7 x 10^{-6} K⁻¹ by doping SDC in the experiment, which matches the CTE value of the commercial electrolyte SDC, according to the thermal expansion property test. Keywords: YBCO, Composite, Cathode, Solid oxide fuel cell ### Preparation and Properties of Y_xSr_{1-xy}TiO_{3-δ} anode for Solid Oxide Fuel Cells Ko-Yun Chao 1*, Ching- Hsuan Wu 1, I-Ming Hung 1 2 ^{1*} Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ² Hierarchical Green-Energy Materials Research Center, National Cheng Kung University *Corresponding Author: s1105222@mail.yzu.edu.tw #### Abstract To improve electronic conductivity, catalytic performance, and reduce thermal expansion coefficient, this experiment uses titanium strontate $SrTiO_3$ electronic ionic-electron conductors (Mixed ionic-electron conductors, MIEC) as the anode material, with doping to replace the A-site and B-site elements. Prepare $Y_xSr_{1-xy}TiO_3$ - (0.06x0.09, y=1.5 YST) powder using the citric acid-EDTA technique, and test its characteristics in a reducing environment. Sintering the powder in an Ar/4 % H₂ reducing environment reduces the formation of impurity phases, as seen by the XRD pattern. The size of YST rises linearly with temperature, according to the thermomechanical analyser (TMA). Following the calculations, it can be determined that when y = 1.5, its thermal expansion coefficient is consistent with that of the electrolyte material Yttria-stabilized zirconia (Yttria-stabilized zirconia, YSZ), which has a good match. Y_{0.07}Sr_{0.895}TiO₃- has a high conductivity 23.48 S cm⁻¹ after the conductivity measurement result, measured in Ar/4 % H₂ reducing environment, each component is an n-type semiconductor, and the conductivity decreases as the temperature rises. In terms of stability testing, the peak intensity and location of YST after 30 hours in a reducing environment are identical to those before treatment, and no impurity phases are formed. It demonstrates that in a reducing environment, YST has a stable phase structure and might be used as a solid oxide fuel cell anode material. Keywords: Anode, Mixed ionic-electron conductors, Pervoskite ### Preparation and Characterization of High Temperature Mixed Proton-electron Conductors Ko-Yun Chao 1*, Kuan- Chi Fu 1, I-Ming Hung 1 2 ^{1*} Department of Chemical Engineering and Materials Science, Yuan Ze University, Taiwan, ²Hierarchical Green-Energy Materials Research Center, National Cheng Kung University *Corresponding Author: s1105222@mail.yzu.edu.tw #### Abstract The high-temperature hydrogen proton transport membrane (Hydrogen Transport Membrane, HTM) separates and purifies hydrogen to produce high-purity hydrogen, substantially improving SOFC operation efficiency and energy usage. $Sr(Ce_{0.6}Zr_{0.4})_{0.9}Y_{0.1}O_{3}$ - (SCZY) powder is prepared using the citric acid-EDTA technique, while $Y_{1.0}Ba_{1.0}Co_2O_5$ +(YBCO) powder is prepared using the solid-phase reaction method. A 60:40 weight ratio of SCZY/YBCO was used to make a ceramic composite of proton-electron mixed conductor. The effect of sintering temperature and environment on phase analysis, microstructure, and electrical conductivity of ceramic composites was also addressed. The proportion of impurity phases rises as the sintering temperature increases, and impurity phases such as $Ce_{0.5}O_3Y_{0.497}O_{1.751}$ and $SrCoO_{2.29}$ are produced, as seen in the XRD pattern of the SCZY/YBCO ceramic composite with a weight ratio of 60:40. After sintering at 1250°C, the structure is dense, with a porosity value of around 0.5%, as observed by SEM images and estimated using the Archimedes method. When measured in the air, the electrical conductivity is 13.44 S/cm at 800°C operating temperature. The coefficient of thermal expansion is 17.3 ×10⁻⁶ K⁻¹, which is closest to the coefficient of thermal expansion of nickel oxide, which is around 14 ×10⁻⁶ K⁻¹. This indicates that this sample might be used for high-temperature hydrogen proton transfer. Keywords: Composite, proton-electron mixed conductor, Hydrogen Transport Membrane # Spontaneous formation of superlattice thin film with perovskite A³+B³+O₃ structure using dynamic aurora PLD and its effect on physical properties Takeshi Kawai¹, Takahiko Kawaguchi², Naonori Sakamoto³, Hisao Suzuki⁴, Naoki Wakiya⁵ ¹Master student, Department of Engineering, Shizuoka University ²Assistant Professor, Department of Engineering, Shizuoka University ³Associate Professor, Department of Engineering, Shizuoka University ⁴Professor emeritus, Research Institute of Electronics, Shizuoka University ⁵Professor, Research Institute of Electronics, Shizuoka University #### **Abstract** We have reported spontaneous superlattice formation in Sr-excess SrTiO₃ (STO) thin film deposited on STO(001) substrates using dynamic aurora PLD.^[1] The excess Sr is inserted as SrO double layer called Ruddlesden-Popper (RP) type planar fault. Therefore, the spontaneously formed superlattice is composed of two layers having different concentration of RP planar faults. As the condition of spontaneous superlattice formation, we have also found that coherent growth (small lattice mismatch) is essential. Therefore, it was considered that following three conditions are expected to be needed for spontaneous superlattice formation. (1) perovskite type compound having A-site excess composition, (2) small lattice mismatch and (3) deposition under magnetic field. The purpose of this work is to form spontaneous superlattice thin films in A³⁺B³⁺O₃ perovskite type compounds where no RP planar faults have been reported. As the candidate of A³+B³+O₃ perovskite type compounds, NdFeO₃ and LaCrO₃ were selected. These two compounds have orthorhombic symmetry in the bulk. However, on the basis of pseudo cubic lattice parameter, very small lattice mismatch is expected. Thin film was deposited on an STO (001) substrate at 800° C in 1.0×10^{-4} Torr O₂ under magnetic field of 2,000 G. We also evaluated the physical properties of the thin films. Specifically, for the NdFeO₃ and LaCrO₃ thin films, gas sensor properties and thermoelectric properties were measured, respectively. Figure 1 shows XRD patterns of NdFeO $_3$ thin film with Nd/Fe=1.50 ratio. This figure shows that satellite peaks are observed. This indicates that spontaneous superlattice is formed for Nd-excess NdFeO $_3$. The superlattice period for Nd/Fe=1.50 was 26 nm. Figure 2 shows HAADF-STEM image of Nd-excess NdFeO $_3$ thin film (Nd/Fe=1.50). In this figure, 15-20 nm period is observed which agrees with the superlattice period calculated from XRD pattern. Figure 3 shows XRD patterns of LaCrO $_3$ thin film with Nd/Fe=1.28 ratio. The superlattice period for La/Cr=1.28 was 18.5 nm. **Keywords:** Dynamic aurora PLD, Epitaxial, Spontaneous superlattice formation, SrTiO₃(001) substrate, Superlattice period, Gas sensor properties, Thermoelectric properties #### Reference: [1] N. Wakiya, et al., NPG Asia Mater., 8 (2016) e279. Fig.1 XRD pattern of the $Nd_{1.50}FeO_{3+\alpha}$ thin film deposited on $SrTiO_3(001)$ substrate. Fig. 2 HAADF-STEM image of $Nd_{1.50}FeO_3$ thin film deposited on the $SrTiO_3$ (001) substrate. Fig.3 XRD pattern of the $La_{1.28}CrO_{3+\alpha}$ thin film deposited on $SrTiO_3(001)$ substrate # Preparation and characterization of epitaxially grown YSZ thin films on porous silicon substrates for SOFC applications Haruki Zayasu¹, Hiroki Nakane¹, Takahiko Kawaguchi², Naonori Sakamoto³, Hisao Suzuki⁴, Naoki Wakiya⁵ ¹Master student, Department of Engineering, Shizuoka University, Japan ²Assistant Professor, Department of Engineering, Shizuoka University, Japan ³Associate Professor, Department of Engineering, Shizuoka University, Japan ⁴Professor emeritus, Research Institute of Electronics, Shizuoka University, Japan ⁵Professor, Research Institute of Electronics, Shizuoka University, Japan #### **Abstract** Yttria-stabilized zirconia (YSZ) is widely used as an electrolyte for solid oxide fuel cells (SOFCs), but it is required to lower the driving temperature. One method of lowering the drive temperature is to use thin the YSZ layer to reduce the impedance, and the preparation of a YSZ semi-self-supporting thin film on a porous substrate such as a stainless mesh has been studied. We have established the conditions for producing porous Si (PSi) by anodizing a Si substrate, and by peeling off the porous layer to produce a through-type PSi in which vertical pores penetrate
from the front surface to the back surface. We think that if the through-type PSi could be used as a substrate and a new thin film SOFC that can be driven at a low temperature could be realized. There are few reports that an oxide thin film having a fluorite structure grows epitaxially on an oxide thin film having a perovskite structure used as an electrode for a thin film SOFC. The purpose of this work is to establish the film formation conditions for epitaxially growing the YSZ thin film on the perovskite structure La_{0.7}Sr_{0.3}MnO₃(LSMO) thin film and to evaluate the electrical conductivity of the prepared YSZ thin film. The through-type PSi substrate was prepared by anodizing an n-type substrate in a mixed solution of hydrofluoric acid and ethanol (HF solution). After anodizing for a specified time, the current density was rapidly increased to peel off the porous layer. Thin films of YSZ, CeO2 as a buffer layer, and LSMO as a bottom electrode were prepared on the Si and through-type PSi using PLD. Platinum top electrodes were vapor-deposited on the prepared thin film sample through a metal mask using a sputtering method, and the electrical conductivity was measured. Figure 1 shows the RHEED images of YSZ, CeO₂/YSZ, LSMO/CeO₂/YSZ, and YSZ/LSMO/CeO₂/YSZ on a silicon substrate. Streak patterns are observed for RHEED images. This means that all layers are epitaxially grown on the each under layers. In addition, when comparing the resurface YSZ thin film and the LSMO streak, the positions of the bright spots are different, and the YSZ streak on the first layer and the resurface surface match, so the YSZ thin film grows epitaxially on the oriented LSMO thin film. Figure 2 shows the change of in-plane electrical conductivity with temperature for an epitaxial YSZ thin film formed on a through-type porous silicon substrate. In this figure, the change of electrical conductivity of a bulk YSZ (averaged values of several reports) were also shown for comparison. This figure suggests that electrical conductivity of epitaxial YSZ thin film is higher than that of bulk YSZ. **Keywords:** PLD, Porous Si, SOFC, Electrical conductivity Fig. 1 RHEED pattern of Si[001] (a)YSZ/Si , (b)CeO₂/Si (c)LSMO/CeO₂/Si , (d)YSZ/LSMO/CeO₂/Si Fig. 2 Arrhenius plot of this YSZ thin film # Spontaneous formation of superlattice thin films on substrates having heterogenious structure using dynamic aurora PLD Kaoru Ogata¹, Takahiko Kawaguchi², Naonori Sakamoto³, Hisao Suzuki⁴, Naoki Wakiya⁵ ¹Master student, Department of Engineering, Shizuoka University ²Assistant Professor, Department of Engineering, Shizuoka University ³Associate Professor, Department of Engineering, Shizuoka University ⁴Professor emeritus, Research Institute of Electronics, Shizuoka University ⁵Professor, Research Institute of Electronics, Shizuoka University #### **Abstract** We have reported spontaneous superlattice formation in epitaxial SrTiO₃ thin films with A-site excess composition (Sr/Ti=1.4) on SrTiO₃(001) single crystal substrates by PLD under a magnetic field of 2,000 G. As the conditions of spontaneous superlattice formation in Sr-Ti-O system, following 4 conditions are needed. (1) The thin film should have perovskite structure. (2) The perovskite thin film should have A-site excess composition. (3) Coherent growth is needed. (4) Magnetic field application more than 1,000 G is needed during deposition. To satisfy the condition (3), the Sr-Ti-O thin film has been deposited on single crystal substrates having perovskite structure such as SrTiO₃, LaAlO₃ and (La, Sr)(Al, Ta)O₃. The purpose of this study is to clarify whether a thin film with a superlattice structure can be spontaneously formed on a non-perovskite MgO substrate if the above conditions (1) to (4) are satisfied. In order to satisfy the condition (3), BaZrO₃ (BZ) was deposited because the mismatch of lattice constant with MgO is as small as -0.46%. BZ thin films were deposited on MgO(001) single crystal substrate in a magnetic field (2000G) during the deposition using dynamic aurora PLD method. The deposition temperature was at 800 °C and the oxygen pressure during the deposition was 1.0×10⁻¹ ⁴ Torr. The crystal structure of the thin films was analyzed using precise X-ray diffraction (MRD). The XRD patterns of the BZ thin films are shown in Fig. 1, where the red and blue lines represent the compositions of Ba/Zr=1.35 and 0.99, respectively. From this figure, a satellite peak is observed at the low angle side of the BZ(002) peak at composition 1.35. The reciprocal lattice map around (022) of BZ shown in Fig. 2 reveals the Q_v value (in-plane reciprocal lattice point) of BZ thin film coinsides with that of MgO. This means coherent growth. The data shown in Figs. 1 and 2 mean that spontaneous superlattice formation is observed for BZ thin film deposited on MgO substrate. Since conditions (1), (2) and (4) were satisfied in addition to condition (3), in this work, it was found that the four conditions are applicable to prepare spontaneous superlattice formation of BZ thin film deposited on a nonperovskite MgO substrate. Keywords: Superlattice; PLD; Perovskite; Magnetic field Fig.2 Reciprocal lattice map around $BaZrO_3$ (022) # Low temperature Deposition of Transparent PZT Thin Films with Giant Piezoelectricy on Glass Substrate from Molecular-designed Precursors *Kazuto Yoshida¹, Hisao Suzuki², Takashi Arai³, Takahiko Kawaguchi¹, Naonori Sakamoto², Naoki Wakiya², Desheng Fu¹ ¹ Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan ² Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan ³ Department of Chemistry and Biochemistry, Numazu college, National Institute of Technology, Numazu, Japan #### **Abstract** In recent years, transparent electronic devices have been attracting much attention in the research field of sensors and actuators. To develop transparent electronic devices, transparent ferroelectric thin films with high ferroelectric and piezoelectric properties are required to reduce the size, and cost. For this purpose, high performance Pb(Ti, Zr)O₃ (PZT) thin films are essential. For example, if a transparent MEMS device is developed by high performance PZT thin films on a glass substrate, a tactile technology of HAPTICS can be introduced to touch panels and so on. To realize such devices, transparent piezoelectric thin films with good piezoelectric properties should be deposited at lower temperatures below 5502. In this study, we successfully deposited transparent PZT thin films with excellent electrical properties on a glass substrate at a low temperature of 5002. For the low temperature deposition, we used the CSD method from molecular-designed precursor solutions consisted of Zr-O-Ti bonds with high polymerization degree to lower the crystallization temperature. We also used the seeding layer of LaNiO₃ (LNO). As a result, we successfully deposited the transparent high performance PZT thin films on a glass substrate with LNO thin film electrode. As a result of From the XRD patterns shown in Fig. 1, the PZT thin film from molecular-designed precursor exhibited preferred orientation in the direction of a- & c-axes even on the glass substrate, and the crystallinity was very high than the films deposited from commercialized precursor. The Pb_{1.20}Zr_{0.45}Ti_{0.55}O₃ thin film with a tetragonal composition prepared at low temperature of 500°C showed huge piezoelectric response with an average piezoelectric constant, d₃₃*, of about 530 pm/V calculated from strain and applied voltage, which is similar to those of PZT ceramics with a MPB composition as shown in Fig.2. This huge response is mainly ascribed to the 90° domain switching. To fabricate PZT thin films with giant piezoelectricy by the domain switching and a good ferroelectricity, domain engineering by the well controlled orientation and residual stress is essential. Keywords: PZT Thin film; Low temperature; MEMS; Glass substrate; Chemical Solution Deposition. (a) (b) Fig.1 XRD patterns for low-temperature annealed PZT thin films with different precursors and compositions on glass substrate. (a) $Pb_{1.20}Zr_{0.53}Ti_{0.47}O_3$ film from molecular-designed precursor, and (b) $Pb_{1.10}Zr_{0.53}Ti_{0.47}O_3$ film from commercialized precursor Fig.2 Piezoelectric butterfly curve of Pb1.20Zr0.45Ti0.55O3 thin film fabricated at low temperature of 500°C. # The effect of starting materials on low-temperature preparation of Li_{6.5}La₃Zr_{1.5}Ta_{0.5}O₁₂ single crystal using the flux method *Ryoya Nishimura¹, Takahiko Kawaguchi¹, Naonori Sakamoto^{1,2}, Hisao Suzuki^{1,2}, Naoki Wakiya^{1,2} ¹Graduate School of Integrated Science and Technology, Shizuoka University, Japan ² Research Institute of Electronics, Shizuoka University, Japan #### **Abstract** Garnet-type Li-ionic conductor $Li_7La_3Zr_2O_{12}$ (LLZO) has attracted much attention as an oxide solid-state electrolyte with high ionic conductivity and wide potential window. Because the ionic conduction is scattered by the dislocations and grain boundaries, LLZO particles with high crystallinity is preferable for higher ionic conductivity. In addition, processing temperature should be lower for saving cost and suppressing lithium evaporation. Recently, single-crystalline LLZO particles using the self-flux growth have been reported [1]. In addition, they also reported that the synthesized temperature can be lowered to 500 °C when pyrochlore phase $La_2Zr_2O_7$ and LiOH are used as the starting material and flux, respectively. In the report, however, the obtained LLZO single-crystalline powder was not single-phased because of the starting material insufficiently dissolved. In this study, we purposed on the investigation of the effect of starting materials on the low-temperature flux growth and the preparation of single-phased $Li_{6.5}La_3Zr_{1.5}Ta_{0.5}O_{12}$ (LLZTO) single crystals, which has not been prepared by the flux growth. ###
Experimental LLZTO was prepared using the flux method with three kinds of starting materials (SMs)-a, b and c. The SM-a was unreacted raw materials of La_2O_3 , ZrO_2 , and Ta_2O_5 with hand-milling. The SMs-b and c are ($La_{0.6}Zr_{0.3}Ta_{0.1}$)O_{1.75} (LaZTO) prepared by the solid-state reaction method after hand-milled and planetary-ball-milled SM-a, respectively. For the flux growth, the powders of $LiOH \cdot H_2O$ and one of the starting materials were loaded in the alumina crucible with the Li/La ratio of 15.5. The loaded crucible was kept at 500°C for 10 h in the air. In this study, obtained samples after the flux method with SMs-a, b and c are called A, B and C, respectively. The obtained samples were removed from the crucible after natural cooling, and evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). #### **Results and Discussion** Fig. 1 shows XRD patterns of the samples obtained from the three kinds of SMs. For the sample A, diffraction peaks of La₂O₃ and La(OH)₃ are observed along with LLZTO peaks. Therefore, La₂O₃ is insufficiently dissolved in the LiOH solvent. For the sample B, the main peak of LaZTO around 2θ =28° is observed, implying that LaZTO still remains in the sample. On the other hand, almost no peak of LaZTO is observed for the sample C. In addition, most of the LLZTO particles in sample C have the diameter of about 5 μ m and only {110} faceted plane of rhombic dodecahedron, as shown in Fig. 2. These results indicate that almost single-phased LLZTO single crystals is successfully obtained in the sample C. In contrast, the faceted particle is rarely observed in sample B. The differences observed in XRD and SEM between sample B and C are presumably because of particle size of the starting materials. ### Reference [1] T. Kimijima *et al.*, Cryst. Eng. Comm. **17** (2015) 3487-3492. Fig. 1 XRD patterns for the samples A, B Fig.2 SEM image of the LLZTO single and C obtained by the flux method with crystalline particle in the sample C. the starting materials a, b and c, respectively. ### Synthesis of PZT thin film with single crystal-like ferroelectricity on SUS substrate <u>Seiji Sogen</u>¹, Hisao Suzuki², Takashi Arai³, Takahiko Kawaguchi¹, Naonori Sakamoto², Naoki Wakiya², Desheng Fu¹ ¹ Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu ² Research Institute of Electronics, Shizuoka University, Hamamatsu ³Department of Chemistry and Biochemistry, Numazu college, National Institute of Technology, Numazu #### **Abstract** Pb(Zr,Ti)O₃ (PZT) ceramics and thin films are ferroelectric materials with excellent ferroelectric and piezoelectric properties. Particularly, PZT films have attracted much attention in recent years because of their potential applications in MEMS. Electrical properties of the PZT thin films are greatly affected by many factors and the one of the most important factors are residual stress from substrate. The residual stress caused by the difference in the thermal expansion coefficients between the substrate and the thin film will affect the properties of the thin films. If the thermal expansion coefficient of the substrate is larger than that of the thin film, compressive stress is expected in the thin film, leading to the enhanced ferroelectricity. In this study, we selected SUS430 as a substrate with a large coefficient of thermal expansion to improve the ferroelectricity of the PZT thin films prepared from molecular-designed precursor. Because PZT thin film is easily reacted with the SUS substrate, leading to the decrease of the ferroelectricity. A buffer layer is required to suppress such reaction. In this study, we used two types of buffer layer structure: LaNiO₃ (LNO) and LNO/SiO₂. LNO buffer layer was prepared by the CSD method from the molecular-designed precursor, and it can be crystallized at a low temperature of 550°C (PZT-1). On the other structure, an additional SiO₂ layer was inserted between LNO and SUS to form the LNO/SiO₂ structure (PZT-2) in which a stable SiO₂ layer was deposited by CSD at 700°C following by the LNO deposition. Fig.1 shows the EDS(energy dispersive spectroscopy) elemental mapping of PZT-1 and PZT-2 films. The results show the diffusion of Cr from the SUS substrate into the PZT in PZT-1 film, while Cr diffusion was suppressed in PZT-2 film, indicating that the insertion of SiO₂ layer was very effective to prevent the diffusion of Cr from the substrate. Fig.2 shows the ferroelectric hysteresis loops for PZT-1 and PZT-2 films. The remanent polarization of PZT-1 and PZT-2 films were very high compared to that of PZT thin film deposited on Si substrate. In addition, the square hysteresis loop for PZT-2 film was very similar to that of single crystal, indicating the high quality of our PZT film. **Keywords:** CSD(Chemical Solution Deposition); PZT thin films; Electrical properties; Molecular-designed precursor; SUS substrate. films. Fig.1 EDS mapping of PZT-1 and PZT2 Fig.2 Hysteresis loop of PZT-1 and PZT2 films. # Computer simulation via phase-field method to consider the effect of magnetic field application on the spontaneous superlattice formation using dynamic auroral PLD Ayano Iizuka¹, Takahiko Kawaguchi², Naonori Sakamoto³, Hisao Suzuki⁴, Naoki Wakiya⁵ ¹Master student, Department of Engineering, Shizuoka University ²Assistant Professor, Department of Engineering, Shizuoka University ³Associate Professor, Department of Engineering, Shizuoka University ⁴Professor emeritus, Research Institute of Electronics, Shizuoka University ⁵Professor, Research Institute of Electronics, Shizuoka University #### **Abstract** We have reported spontaneous superlattice formation in epitaxial strontium titanate (SrTiO₃) thin film deposited on SrTiO₃(001) having A-site excess composition (Sr/Ti=1.4) by PLD under magnetic field of 2,000 G (dynamic aurora PLD).^[1] This spontaneous superlattice formation is not observed without applying magnetic field during deposition. The purpose of this work is to reproduce spontaneous superlattice formation in Sr-excess SrTiO₃ thin film using phase-field method without limiting the direction of propagation of the composition wave. For this calculation, the open source-code for AB binary alloy^[2] was modified. In this simulation, phase separation from uniform solid solution to SrTiO₃ and SrO. To consider the temporal evolution of a composition field, following Cahn-Hilliard diffusion equation was used; $$\frac{\partial c}{\partial t} = \nabla \cdot \left[M \nabla \left(\frac{\delta G}{\delta c} \right) \right] \tag{1}$$ (c, G, M is molar fraction of SrO, total free energy in composition field and mobility, respectively.) The temporal evolution of a composition is calculated from free energy gradient of the field based on equation (1). In this simulation, chemical free energy and interfacial energy (concentration gradiation energy) were considered, and diffusion potential was calculated as the function of position using finite difference computation. In addition, we employed following two additional boundary conditions; (a) excess potential is given at the growing surface of the thin film by the ion impingement (b) the excess energy is lowered exponentially toward the thickness direction. Figure 2 shows the results of simulating the time evolution of the composition under the following conditions: Sr/Ti = 1.4, temperature 700 °C, activation energy of diffusion 1.81 eV, and external magnetic field 2000 G. This result shows that the superlattice structure is formed. This means that the spontaneous formation of the superlattice by spinodal decomposition can be reproduced by computer simulation without limiting the direction of propagation of composition wave. Figure 2 shows the relationship between amount of increasing potential by colliding cations and superlattice period. This relation agrees well with the experimental results that there is a threshold in the relationship between superlattice period and deposition rate. Keywords: Simulation, Phase-field, Phase separation, Superlattice #### References - [1] N. Wakiya, et al., NPG Asia Mater., 8 (2016) e279. - [2] T. Koyama, et al., Mater. Trans., 46 (2005)1187. Fig. 1. Result of simulation using phase-field model. Fig. 2. Relationship between calculated superlattice period and amount of ion impingement. # The study of 8YSZ electrolyte fabrication of the tubular solid oxide fuel cells by the dip-coating method Yi-Chu Han, Yung-Chin Yang Institute of Materials Science and Engineering; National Taipei University of Technology, Taiwan *Corresponding Author #### **Abstract** Using the plasma spraying technology to prepare an electrode of tubular SOFC is simple and low-cost process, but use this way to prepare the electrolyte had encounter many question, like not density or lot of porous on the electrolyte. So that prepared the dense electrolyte on plasma sprayed tubular porous anode by the dip-coating method, then prepared porous cathode on the electrolyte by plasma spraying method which is a feasible and commercially competitive with the expected process. This study prepared the 8YSZ electrolyte layer on the porous plasma sprayed anode by the dip-coating method. In the study, using different sintering temperatures and time to improve the density of electrolyte layer, and investigate the anode and electrolyte changes in the microstructure after sintering. By changing humidity in the dipping process can influence the rate of drying the slurry, furthermore the thickness of the electrolyte coating can be improved by increasing the cycle of dipping. According to electrochemical impedance analysis, it can be known that the increase of the sintering temperature can reduce the ohmic resistance of the electrolyte. However, excessive sintering will cause poor adhesion between the anode and the electrolyte, which will cause the electric charge to be difficult to cross and cause the impedance value to
be too large. Therefore, 1450 degrees is selected as the best sintering temperature. ### **Keywords:** SOFC, Thermal spray #### References - [1] H. Sasaki, S. Otoshi, M. Suzuki, T. Sogi, A. Kajimura, N. Sugiuara, M. Ippommatsu, Fabrication of high power density tabular type solid oxide fuel cells, Solid State Ionics 72 (1994) 253–256. - [2] H. Gruner, H. Tannenberger, European SOFC Forum Secretariat, 611–616 (1994). - [3] M. Pastula, R. Boersma, D. Prediger, M. Perry, A. Horvath, J. Devitt, D. Gosh, Development of Low Temperature SOFC Systems for Remote Power Applications, The European Fuel Cell Forum (2000) 123–132. - [4] C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, G. Meng, Preparation of yttria stabilized zirconia membranes on porous substrates by a dip-coating process, Solid State Ionics 133 (2000) 287–294. - [5] Z. Wang, K. Sun, S. Shen, N. Zhang, J. Qiao, P. Xu, Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method, Journal of Membrane Science 320 (2008) 500–504. ### The Research of the Mechanism of in-situ Sintering Solid Oxide Fuel Cell Yi-Le Liao¹, Sea-Fue Wang^{1*} ^{1*} Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan *Corresponding Author: sfwang@ntut.edu.tw #### **Abstract** In this study, three configurations of SOFC cells were prepared by the in-situ sintering method. Both electrodes were Ni-foam coated LiNi_{0.81}Co_{0.15}Al_{0.04}O₂ (Ni-NCAL) and electrolyte was Sm_{0.2}Ce_{0.8}O_{1.9} (SDC) in Cell A (Ni-NCAL|SDC|Ni-NCAL). The Ni-Ag electrode was used instead of Ni-NCAL, as cathode in Cell B (Ni-Ag|SDC|Ni-NCAL). For Cell C, the Ni-Ag electrode was used as anode and the Ni-NCAL electrode was used as cathode (Ni-NCAL|SDC|Ni-Ag). The open-current voltages (OCV) of Cell A and cell B were higher than 1.0 V during operating at 550°C. There was no leakage gas and current flow through the electrolyte layer during cell operation. The OCV of Cell C was lower than 0.6 V during operating at 550°C. The power densities of Cell A, Cell B, and Cell C were 535.2, 250.5, and 22.6 mW/cm², respectively. The ohmic impedances of Cell A, Cell B, and Cell C were 0.164, 0.164, and 0.485 Ω-cm², respectively. The polarization impedances of Cell A, Cell B, and Cell C were 0.246, 0.608, and 3.038 Ω -cm², respectively. Absence of the Li element in the Cell C anode caused poor insitu sintering. The NCAL electrode changed to Ni-Co alloy and LiOH in reducing atmosphere. The LiOH is a well-known CO2 absorbent that produced Li2CO3 when reacted with CO2 in the air. The LiOH or Li₂CO₃ were found in both cathode and anode electrodes via XRD analysis after the cell measurement. The liquid phase of LiOH (T_{melting} 462°C) could enhance in-situ sintering, due to the LiOH liquid transport to the electrolyte layer through the capillary phenomenon. It improved the contact of electrode and electrolyte. After the cell measurement, the Li salts were not found in the electrolytes in XRD patterns, due to LiOH or Li₂CO₃ existed as amorphous phase The Li₂CO₃ was identified in the electrolytes by Raman spectra. The Cell C has the lowest intensity of the peak located at 1114 cm⁻¹, which corresponds to the Ag vibrational modes of Li₂CO₃. The Li salts were transporting from anode electrode to electrolyte was the important factor to improve the performance of SOFC. **Keywords:** solid oxide fuel cell, in-situ sintering, capillary phenomenon ### H. High performance materials under extreme conditions H_P01 ### Processing and performance of oxidation-resistant layers on graphite Yi-Hsiang Lai*, Yung-Jen Lin Department of Mechanical and Material Engineering, Tatung University , Taiwan *Corresponding author: eric1998041110@gmail.com #### **Abstract** In this study, SiC layers were prepared on graphite surface by silicon vapor infiltration and slurry dipping methods. [1] The phase change, microstructure and oxidation resistance of the reaction layer/coating were investigated. The results showed that using silicon vapor infiltration method, the SiC layer was not observed on the graphite surface after 1500°C/1 h treatment while 1500°C/4 h and 1500°C/9 h treated samples had about 100 μm and 150 μm SiC layer, respectively. The surface roughness of the reaction SiC layer increased with the increase of heating time. In the slurry dipping method, the slurry was prepared with phenolic resin, alcohol, Si powder, and SiC powder. The dipcoated samples were treated in Ar at 1500°C for 2 h. The coating layer was converted into SiC with a thickness of about 150-200 μm . However, there were obvious cracks in the coating layer. In the oxidation resistance test at 1000°C in air, pristine graphite oxidized completely within 2 h. The sample with 150 μm SiC layer, prepared via silicon vapor deposition, retained 17% of graphite after 2 h in the oxidation test. For the slurry dipping sample with comparable thickness of SiC coating, 43% of graphite could survive after 2h in the oxidation test. The discontinuity of the reaction layer/coating exposed inner graphite to the air causing oxidation and loss of graphite. **Keywords:** Silicon vapor deposition, slurry dipping, graphite, SiC coating #### References [1] Y. Jiang, C. Ye, H. Ru, W. Wang, C. Zhang, X. Yue, "Oxidation protective MoSi₂-SiC-Si coating for graphite materials prepared by slurry dipping and vapor silicon infiltration," Ceramics International, 44 [5] 5171-5178, 2018. H P02 # Influence of Unipolar Pulsed Two-Stage Rise Voltage on Wear Resistance of Carbon Steel Surface Using MAO method Chien-Chih Chiang 1*, Jeou-long Lee¹, Ta-Lun Sung¹, Chang-Chia Chou², Jin-Yih Kao ², Ming-Han Tsai¹, Ya-Chi Wu¹ ^{1*} Department of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, ²Graduate School of Mechanical Engineering, Lunghwa University of Science and Technology, Taiwan *Corresponding Author: CCChiang@gm.lhu.edu.tw #### **Abstract** This study aims to use micro-arc oxidation(MAO) technology to prepare micro-arc oxide coatings on low carbon steel (SS400) for increasing its wear resistance[1]. However, as micro-arc oxidation coatings are not easy to be produced on the iron surface, this research attempts to use the aqueous solutions containing aluminum and phosphate salts to be the main electrolytes[2]. The experiment uses a unipolar pulsed two-stage rise power supply at an operating voltage of 425/525V, and the ceramic coatings prepared by micro-arc oxidation can reach a maximum hardness of 1783 Hv in this study (the substrate is 550 Hv), and the MAO coating can reach the highest thickness of 77.81µm in this study; furthermore, MAO coating can obtain the best wear resistance (abrasion loss:.0065g/3000rev.) in this study, which is about 7 times better than the substrate. Keywords: micro-arc oxidation, wear resistance, carbon steel #### References - [1] Y. L. Wang, Curr. Appl. Phys., 9, 1067 (2009). - [2] S. A. Karpushenkov, J. Appl. Electrochem., 40, 365(2010). # Analysis of the microstructure and dielectric properties on CaCu₃Ti₄O₁₂-based dielectric ceramic materials Kai-Yo Huang^{1*}, Yu-Chuan Wu¹, Chun Ming Huang², Yu Chen Yeh¹ ^{1*}Materials Science and Engineering, Nation Taipei University of Technology, Taiwan, ² Prosperity Dielectric CO., LTD. *Corresponding Author: t109788047@ntut.org.tw #### **Abstract** The CaCu₃Ti₄O₁₂ (CCTO) compound had been known since 1967 by Deschanvres et al.[1] CCTO was a ceramic material with a pseudo-perovskite structure which exhibited considerable permittivity (10^4-10^6) within wide ranges of frequency (1~Hz-1~MHz) and temperature (100~to~600~K) by Subramanian et al.[2] In this study, $Ca_{1-x}Sr_xCu_3Ti_4O_{12}$ (x=0.075~0.1~and~0.125)(CSCT) ceramic were prepared by conventional solid-state method, and XRD, SEM, EDS and EIS were used to analyze. The XRD results indicated that the dielectric materials were $CaCu_3Ti_4O_{12}$ cubic phase and no second phase. From SEM analysis, dielectric materials were densification structure. The EDS results indicated that both large and small grains contained Sr signals, indicating that Sr had been successfully doped into the CSCT dielectric material. The EIS results showed that CSCT100 had the largest dielectric constant (3.35×10^3) , and CSCT75 had the smallest dielectric loss value (2.77×10^{-2}) when the frequency was 1 kHz at room temperature. **Keywords:** CaCu₃Ti₄O₁₂, Dielectric constant, Dielectric loss, Solid-state reaction #### References - [1] A. Deschanvres, B. Raveau, F. Tollemer, Effect of Impurity Molecules on Triplet-Singlet Transition in Crystalline Naphthalene, Bull. Soc. Chim. France, 11 (1967) 4077. - [2] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, A. W. Sleight, High Dielectric Constant in ACu₃Ti₄O₁₂ and ACu₃Ti₅FeO₁₂ Phases, J. Solid State Chem., 151 2 (2000) 323-325. # High temperature stability BaTiO₃-Bi_{0.5}Na_{0.5}TiO₃-based dielectric ceramics of formulation improvement and material properties analysis Ming-Zhe Lu^{1*}, Yu-Chuan Wu¹, Yu-Chen Yeh¹, Chun-Ming Huang² ^{1*} Department of Materials Science and Engineering, National Taipei University of Technology, Taiwan, ² PROSPERITY DIELECTRICS CO., LTD. *Corresponding Author: t109788056@ntut.edu.tw #### **Abstract** Nb-doped $0.9BaTiO_3$ - $0.1Bi_{0.5}Na_{0.5}TiO_3$ ceramic that satisfy the EIA X9R specification were prepared by conventional solid-state method. [1] In this study, $0.9BaTiO_3$ - $0.1Bi_{0.5}Na_{0.5}TiO_3$ was synthesized by solid-state method, and mixed with specific proportion of Nb_2O_5 , then transition elements such as Mg or Mn were added to improve its dielectric properties. The phase was identified using X-ray diffraction, it was found that the main phase of the sample was tetragonal $BaTiO_3$. After sintering, the sample was polished with sandpaper and thermally etched. Its grain size was observed by scanning electron microscope. In order to determine
whether that sintered sample has a coreshell structure, the sintered sample had chemical etching. Its microstructure was observed by scanning electron microscope. The sintered sample was coated by silver glue, and measured the AC impedance from 100 Hz to 1 MHz to understand the frequency dependent of the sample's dielectric constant and dielectric loss at room temperature. Measuring the change of the dielectric properties of the sample at -55°C to 150°C, and use the formula to calculate the dielectric loss and the TCC curve against temperature. Keywords: BaTiO₃, X8R, TCC #### References [1] G. Yao, X. Wang, Y. Wu, L. Li, D.C. Lupascu, Nb-doped 0.9BaTiO₃-0.1(Bi_{0.5}Na_{0.5})TiO₃ ceramics with stable dielectric properties at high temperature, *J. Am. Ceram. Soc.* 95 (2012) 614–618. # Use of a composition-graded solid electrolyte for determination of Gibbs energy of formation of lanthanum hafnate: A prospective TBC material for turbine applications ### Gourav Mundhra^{1,2#*} ^{1*} Department of Metallurgical and Materials Engineering, National Institute of Technology Durgapur, India *Corresponding Author: *gourav.nitdurgapur.mse17@gmail.com* #### **Abstract** Lanthanum hafnate ($La_2Hf_2O_7$) is a potential thermal barrier coating (TBC) material for gas turbines at temperatures above 1473 K. Because of experimental difficulties, Gibbs energy of formation of $La_2Hf_2O_7$ has not been measured. In this study a novel solid-state electrochemical cell has been designed for measurement of Gibbs energy in the temperature range from 875 to 1275 K. The cell employs a composite solid electrolyte consisting of single crystal CaF_2 and composition-graded (LaF_3) $_y$ (CaF_2) $_{1-y}$. The standard Gibbs energy of formation of $La_2Hf_2O_7$ from component binary oxides, La_2O_3 (A-rare earth) + 2 HfO $_2$ (monoclinic) $\rightarrow La_2Hf_2O_7$ (pyrochlore), is obtained as $\Delta G_{(f,ox)}^o$ /J mol $^{-1}$ (± 4500) = -111417 - 9.89 (T/K). The result can be used for evaluating compatibility of $La_2Hf_2O_7$ with bond coat under severe environmental conditions and reactions with entrained calcium-magnesium-alumino-silicates (CMAS). **Keywords:** La₂Hf₂O₇, Thermal barrier coatings (TBC), Composition-graded electrolyte, Gibbs energy of formation, Thermodynamic properties. ## High Performance Solid State SO₂ sensor using Nano-structured Oxides Tsung-Yang Ho¹, Shu-Yi Tsai ², Kuan-Zong Fung ³ ^{1*} Dept of Materials Sci. and Engineering, National Cheng Kung University, 70101 Tainan, TAIWAN *Corresponding Author: scarletdevil100@gmai.com #### **Abstract** The emission of SO₂ mainly comes from the burning of fossil fuels such coal and sulfur-containing oil. Thus, the source of SO₂ emission may be contributed from power plants or steel making factories. Exposures to SO₂ can harm the human respiratory system and make breathing difficult. People suffered by asthma are sensitive to these effects of SO₂. To improve air quality, the concentration of SO₂ is typically limited by national and/or regional standards to reduce emissions of SO₂. Therefore, the accurate detection of SO₂ is important. Electrochemical solid state sensors are known to provide reliable and stable signals based on the use of solid electrolytes. Oxygen sensors based on oxygen-conducting yittria- stabilized zirconia have shown their wide applications. In this study, a solid state SO₂ sensor are developed using Li-conducting Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ (LATP). Li₂SO₄ is used as electrode. With the application of adequate voltage, Li₂SO₄ may be formed at the surface exposed to SO₂-containing atmosphere. Thus, the current measured from the sensors is expected to be proportional to the concentration of SO₂. The dependence of SO₂ concentration, temperature, and electrode microstructure will be analyzed and discussed. Keywords: LATP, SO₂ sensor, Amperometric sensor, - [1] B. Chachulski, Amperometric sulfur dioxide gas sensor with dimethyl sulfoxide as solvent for internal electrolyte solution, Analyst 123 (1998) 1141–1144. - [2] JR Stetter, J. Lin, Eason, "Amperometric Gas Sensorss-A Review"[J]. Chemical Reviews, 2008, 108. - [3] Jasinski, Grzegorz, et al. "Properties of a lithium solid electrolyte gas sensor based on reaction kinetics." Measurement Science and Technology 17.1 (2005): 17. - [4] Liu, Fangmeng, et al. "Stabilized zirconia-based mixed potential type sensors utilizing MnNb2O6 sensing electrode for detection of low-concentration SO₂." Sensors and Actuators B: Chemical 238 (2017): 1024-1031. ² Dept of Materials Sci. and Engineering, National Cheng Kung University, 70101 Tainan, TAIWAN ³Dept of Materials Sci. and Engineering, National Cheng Kung University, Hierarchical Green-Energy Materials (Hi-GEM) Research Center, Tainan 70101, Taiwan H-P07 # Effects of MAO Coating on the Hardness and Corrosion Resistance of 6032 Aluminium Alloy <u>Chien-Chih Chiang^{1*}</u>, Jeou-long Lee^{1*}, Ta-Lun Sung¹, Shin-Cheng Chen¹, Yuan-Wen Huang¹, Chi-Yu Hsu¹, Hsuan-Hsien Chuang¹ ^{1*} Department of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, *Corresponding Author: CCChiang@gm.lhu.edu.tw #### **Abstract** This study aims to increase the hardness and corrosion resistance of the surface of commercial pots (6032 aluminum alloy). By use of bipolar pulse power supply for micro-arc oxidation(MAO) surface treatment, the operating parameters include different positive and negative voltages[1-2]. The results of this study show that the coating prepared by micro-arc oxidation with bipolar pulsed power supply, positive and negative voltage (+525V/-50V), has a much higher hardness (836Hv) than that of a commercial aluminum alloy pot(150Hv), and the corrosion resistance (corrosion current density: 1.46*10⁻⁷ A/cm²) of the coating is about 100 times higher than that of the commercial aluminum alloy pot (corrosion current density: 3.36*10⁻⁵ A/cm²). Keywords: micro-arc oxidation, corrosion resistance, aluminum alloy - [1] A.L.Yerokhin, Surf. Coat. Technol., 199, 150 (2005). - [2] Y.F. Han, Mater. Sci. Forum, 898, 1438 (2017). # Dielectric properties of CaO-B₂O₃-SiO₂ glass-ceramics in the millimeter-wave range of 20-60 GHz frequency S.F. Wang^{1*}, B.C. Lai¹, and C.A. Lu² ^{1*} Institute of Materials Science and Engineering, National Taipei University of Technology, Taiwan, ² Material and Chemical Research Laboratories, Industrial Technology Research Institute, Taiwan *Corresponding Author: sfwang@ntut.edu.tw #### **Abstract** This work investigates the dielectric and structural properties of the as-quenched melts of three CaO-B₂O₃-SiO₂ compositions (denoted CBS-1, CBS-2, and CBS-3), and determined their suitability for millimeter-wave applications. The CBS-1 glass-ceramic exhibited the lowest coefficient of thermal expansion (CTE = 3.2 ppm/°C), the highest breakdown strength of 15.20 kV/mm, lowest dielectric constant ($\varepsilon_r = 4.04$) at 60 GHz, and highest dielectric loss ($\tan \delta = 0.0029$) at 60 GHz, which were attributed the presence of quartz (SiO₂) as the major phase. The CBS-2 and CBS-3 glass-ceramics, possessed a major phase of β-CaSiO₃, showed relatively high CTEs (6.6 and 5.9 ppm/ \circ C, respectively), relatively high dielectric constants at 60 GHz (6.29 and 7.61, respectively), and relatively low dielectric losses at 60 GHz (0.0020 and 0.0012, respectively). The CBS-1 glass-ceramic exhibited the highest dielectric loss due to the presence of SiO₂ and the lattice scattering induced by the high glassy phase content. The thermal conductivities (K) of the CBS-1, CBS-2, and CBS-3 glass-ceramics were determined to be 2.43, 1.06, and 0.82 W/mK, respectively. Structural analysis showed the absence of nonbridging oxygen by Raman and FTIR spectroscopy. The high CaO content (>40 mol%) of the CBS-2 and CBS-3 glass-ceramics triggered the formation of nonbridging oxygen in the tetrahedral silicate units. The increase in CaO content of the glass-ceramics increased the number of nonbridging oxygen atoms, thereby resulting in the relaxation of the structure. Consequently, the CBS-2 and CBS-3 glassceramics exhibited low thermal conductivity. All glass-ceramics presented in this work showed high electrical resistivities of greater than $5\times10^{11}~\Omega$ cm. The excellent microwave dielectric and thermal properties of the CBS glass-ceramics facilitate for use in millimeter-wave applications. **Keywords:** millimeter-wave, microwave properties, CaO-B₂O₃-SiO₂ L. LED L_P01 ### **Luminescence Investigation of Chromium-doped Forsterite Phosphor Thin Films** Mu-Tsun Tsai*, Ya-Chen Lin, Ya-Lun Chug Department of Materials Science Engineering, National Formosa University, Taiwan $^{\ast}\text{Corresponding Author}$ #### **Abstract** Near-infrared (NIR) luminescent materials have recently attracted attention for applications in medical fields, biosensors, luminescent probes, lighting and display devices, and night-vision technologies. In this work, we experimentally investigate the luminescence of Cr-doped forsterite (Mg₂SiO₄:Cr) phosphor thin films. The phosphor films were prepared by a sol–gel spin coating process and reported for the first time. The influences of different doping concentrations, film thickness, and heat treatment temperatures on the structure, microstructure and photoluminescence (PL) were examined. The dried films started to produce Mg_2SiO_4 crystalline phase after sintering at 500°C. On heating to 1300°C, forsterite was the dominant phase with a small trace of enstatite (MgSiO₃). The phosphor thin films demonstrated near infrared (NIR) light emission with a peak at 805 nm under excitation at 532 nm, which corresponds to the ${}^4T_{2g} \rightarrow {}^4A_{2g}$ transition of Cr^{3+} centers. The emission intensity of films was dependent upon the dopant concentration and number of coating layer (N). Optimum emission intensity of the films occurred at the coating layer of N = 5 with doping of 2.0
mol% Cr. **Keywords:** Sol-gel, Cr-doped forsterite, Luminescence, Phosphor film Figure 1. PL spectra of Mg₂SiO₄:Cr phosphor film with various number of coating layers (N) after sintering at 1300°C. #### Acknowledgment This work was supported by the Ministry of Science and Technology, Taiwan, under contract MOST-110-2221-E150-018. #### References [1] J. W. Qiao, G. J. Zhou, Y. Y Zhou, Q. Y. Zhang, Z. G Xia, *Nat. Commun.*, 10, 5267 (2019). ### **Luminescence Investigation of Blue-emitting Cordierite Phosphor Thin Films** Mu-Tsun Tsai*, Chu-Xian Yao, Yi-Jun Luo Department of Materials Science Engineering, National Formosa University, Taiwan *Corresponding Author #### **Abstract** Literature survey shows that cerium-doped cordierite phosphor powders have been prepared by the high temperature solid-state reaction method. In this work, we experimentally investigated the luminescence of Ce-doped cordierite (Mg₂Al₄Si₅O₁₈:Ce) phosphor thin films. The phosphor films were prepared by a sol–gel spin coating process and reported for the first time. The influences of different doping concentrations, film thickness, and heat treatment temperatures on the structure, microstructure and photoluminescence (PL) were examined. The dried films started to produce μ -cordierite crystalline phase after sintering at 900 °C, and pure phase α -Mg₂Al₄Si₅O₁₈ formed at 1300 °C. PL spectrum of phosphor thin films consisted of an asymmetric broad emission band from 350 to 550 nm with a peak at 426 nm under UV excitation at 243 nm, originating from the 5d \rightarrow 4f transition of Ce³⁺ ions. The broad emission band was caused by the splitting of the ground state of 4f level into ²F_{5/2} and ²F_{7/2}. The emission intensity of films was dependent upon the dopant concentration and number of coating layer (N). **Keywords:** Sol-gel, Ce-doped cordierite, Luminescence, Phosphor film Figure 1. PL spectrum of Mg₂Al₄Si₅O₁₈:Ce phosphor film sintered at 1300°C, showing that the band can be deconvoluted into two Gaussian components with peaks at 417 and 452 nm, which are attributed to the 5d \rightarrow ²F_{5/2} and 5d \rightarrow ²F_{7/2} transitions, respectively. #### Acknowledgment This work was supported by the Ministry of Science and Technology, Taiwan, under contract MOST-110-2221-E150-018. #### References [1] J. Chen, H. Y. Ma, Y. G. Liu, J. Nanosci. Nanotechnol., 16, 3506 (2016). L P03 # Structures and Photoluminescence Properties of (Ba,Sr)_{1-x}MgAl₁₀O₁₇:Eu_x²⁺ Phosphors Chien-Chih Chiang^{1*}, Jeou-Long Lee¹, Ta-Lun Sung¹, Tzu-Chieh Kao¹, Chen-Ying Wu¹, Shin-Tse Chen¹, Chien-Yu Ku¹ ¹Department of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, *Corresponding Author: CCChiang@qm.lhu.edu.tw #### **Abstract** The UV LED-excited phosphors with multi-function and high efficiency have attracted more and more attention due to the continuous improvement of display technology in recent years. BAM:Eu is a kind of high-efficiency blue phosphor widely used in PDP displays and also have quite good luminous efficiency in VUV application. BAM phosphor are conventionally synthesized by solid state process, but it always required high temperature to improve the phase generate and cation homogeneity. In this paper, a simply, low cost preparation method was being investigated by using chemical precipitation method at room temperature with two kinds of precipitation agent, (NH₄)₂CO₃ and NH₄OH. From XRD result, the precursor of using NH4OH as precipitation agent, named BAM-OH, calcined at 1000-1500 presents some α -Al₂O₃ intermedia phase remained in the product. The precursor synthesized by NH₄HCO₃, named BAM-CO, almost convert to pure BAM phase during 1000-1500 . From the XRD results, the better precursor formation condition of BAM:Eu was using NH₄HCO₃ as precipitation agent, which can obtain good uniformity composition of product. As compared with BAMOH, BAMCO shows better luminescence intensity because of higher crystallinity in each calcined temperature. Using smaller cation, Sr²⁺ substitutes for the Ba site not only decreased the C axis of BAM structure and the lattice parameter but also increased the distortion of the lattice. The structural variation of Ba_{0.85-x}Sr_xMgAl₁₀O₁₇:Eu_{0.15} phosphors strongly affects their photoluminescent properties. The distortion induces a higher strain and makes a larger crystal field split. As the concentration of Sr²⁺substituted for Ba²⁺ site increase, the maximum excitation and emission band shift to red. The intensity of maximum excitation and emission band decrease by high concentration Sr²⁺ and Eu²⁺. Keywords: phosphor, lattice distortion, luminescence property, red shift - [1] D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Displays 198 (1997) 197. - [2] K.-B. Kim, Y.-I. Kim, H.-G. Chun, T.-Y. Cho, J.-S. Jung, J.-G. Kang, Chem. 200 Mater. 14 (2002) 5045. - [3] S. Ekambaram, K.C. Patil, J. Alloys Compd. 248 (1997) 7. - [4] L.-T. Chen, I.-L. Sun, C.-S. Hwang, S.-J. Chang, J. Lumin. 118 (2006) 293. M Materials and technologies for a low carbon, sustainable society M_P01 # ZnO-ZnCr₂O₄ Catalyst Fabricated by Glycine Nitrate Process and Used for Hydrogen Generation with the Steam Reforming of Methanol Chung-Lun Yu¹, Subramanian Sakthinathan¹, Sheng-Yu Chen², Te-Wei Chiu^{1*}, Yung-Shen Fu^{3**}, Bing-Sheng Yu¹ ^{1*} Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, ²Institute of Chemistry, Academia Sinica ^{3**}Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, (fuyongsheng@njust.edu.cn) *Corresponding Author: tewei@ntut.edu.tw #### **Abstract** The risks caused by the over usage of fossil energy were significant problems in recent years. Various fields spent much concern and funds in addition to develop renewable carriers for decreased environmental effect by existing fossil energy. Among climate change, global warming, and energy crisis, hydrogen (H₂) can be used as potential energy carrier due to the clean, non-toxic and more efficient, etc. Nowadays, the mainstream for H₂ generation from industrial is steam reforming of methanol (SRM) and usually used the zinc-based commercial catalyst in this process. According to this work, the ZnO-ZnCr₂O₄ catalyst was successfully prepared by the glycine nitrate process (GNP) and developed for using on H₂ production from SRM. Meanwhile, an increasing specific surface area, porous structure and reaction sites of the zinc-based catalyst could be effectively promoted by the preparation method. As-combusted ZnO-ZnCr₂O₄ catalyst was immensely porous structure due to the gas released during the GNP reaction process. Moreover, according to ZnO distribution and different G/N ratios, the specific surface area (S_{BET}) of as-combusted ZnO-ZnCr₂O₄ catalyst revealed varied from 29.65 m²/g to 46.27 m²/g. The ZnO-ZnCr₂O₄ catalyst (G/N 1.7) exhibited its highest hydrogen production at reaction temperature of 450°C that could reach 4814.25 ml STP min⁻¹ g-cat⁻¹ without activation treatment. However, after activating the ZnO-ZnCr₂O₄ catalyst hydrogen production performance reached 6299.28 ml STP min⁻¹ g-cat⁻¹ at reaction temperature of 500°C. The hydrogen production performance of ZnO-ZnCr₂O₄ catalyst improved by the uniformly addition of ZnO dispersibility with the ZnCr₂O₄. Based on the performance, ZnO-ZnCr₂O₄ catalyst was great potential for industrial and economic impact due to its high efficiency of hydrogen production. **Keywords:** Hydrogen production, ZnO-ZnCr₂O₄, glycine nitrate process, steam reforming, methanol. - [1] T. W. Chiu, R. T. Hong, B. S. Yu, Y. H. Huang, S. Kameoka, A. P. Tsai, Int. J. Hydrogen Energy. 39 (2014) 14222–14226. - [2] E. A. C. Miranda, J. F. M. Carvajal, O. J. R. Baena, Mater. Res. 18 (2015) 1038–1043. - [3] L. Wang, X. Gao, Y. Bai, M. Tan, K. Sun, T. Zhang, Y. Wu, J. Pan, H. Xie, Y. Tan, Fuel. 253 (2019) 1570–1577. M-P02 # CuCrO₂-TiO₂ Nanocomposites Prepared by Glycine Nitrate Process and Photodegradation the Rhodamine B Organic Dye with Ultraviolet Light Zhen-Yu Sun¹, Chung-Lun Yu¹, Te-Wei Chiu^{1*} ^{1*} Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, *Corresponding Author: tewei@ntut.edu.tw #### **Abstract** In recent years, organic dyes used in several fields of applications such as leather, textile, paper, and cosmetics, etc. Meanwhile, Rhodamine B was used as printing dyes of the industry which was usually added to the product. Therefore, the harmful potential factors belong to Rhodamine B which influenced for the environment and living things, especially human. Moreover, to human cancer could be caused by the Rhodamine B organic dyes. To solve the environmental pollutions caused by organic dyes, degradation of organic dye is the potential application in recent years which used the Cu-based material as the degradation catalyst. In this work, CuCrO₂-TiO₂ composite prepared by glycine nitrate process and applied to the degradation of Rhodamine B under UV light condition. The as-prepared composite powder was investigated by XRD and SEM to confirm the morphology and crystal structure of the catalyst. Through Rhodamine B photodegradation, the degrading efficiency by CuCrO₂-TiO₂ composite could reach 90.78% and the constant reaction rate was estimated at about 3.77×10⁻³ min⁻¹. According to the RhB degradation studies, CuCrO₂-TiO₂ composite exhibited high catalytic activity and could apply to degrade and remove the dye industry pollution for environmental purification. **Keywords:** Photodegradation, CuCrO₂-TiO₂, glycine nitrate process, Rhodamine B, ultraviolet light. - [1] T. W. Chiu, Y. W. Feng, *Key Eng Mater*. 617(2014), 187–190. - [2] A. K. Keyan, C. L. Yu, R. Rajakumaran, S. Sakthinathan, C. F. Wu, S. Vinothini, S. M. Chen, T. W. Chiu, *Microchem J*, 160(2021), 105694. ### **Nickel Recovery
from Spent Plating Solution by Chemical Precipitation** Yung-Fu Wu*, Yung-Lin Chen, Wei-Teng Wang, Yu-Ya Lin Department of Chemical Engineering, Ming Chi University of Technology, Taiwan, *Corresponding Author: gausswu@mail.mcut.edu.tw #### **Abstract** Nickel plating is widely used in an electronic manufacturing. An adequate renewal of plating baths can retain the yield of plating processes. However, changing the bath in a short period generates a large amount of spent solution, causing an impact on our environment. Therefore, this study investigated the removal of nickel from the spent solution through a simple chemical precipitation. In addition, the complexing agent and reducing agent in the plating bath are also unfriendly to our environment, so this study adopted the chemical precipitation to remove them through the reaction between these agents and nickel ions. When the pH of the spent solution increased by adding NaOH, nickel hydroxide was generated. The experimental results show that the complexing agent in the solution could reduce the precipitate size to a level of several micrometers, even though the precipitation rate decreased by the complexing agent. If the pH, temperature, and agitation speed were adjusted, the results revealed that the precipitation rate can be effectively controlled. The particles with a size of average 5.31 µm could be obtained from the reaction at pH 12 and 50°C for 60 min under stirring at 600 rpm. XRD and FTIR analyses verified that the precipitate is made of amorphous Ni(OH)₂ and α -phase Ni(OH)₂. This type of micro-sized particles can be applied to fabrication of the energy-storage materials, such as the electrode of nickel-based secondary batteries. Furthermore, the proposed precipitation provided a Ni removal efficiency of more than 98%. Therefore, this study can be used to sustain a circular economy by turning Ni waste to energy-storage materials. Keywords: Nickel, Plating waste solution, Chemical precipitation, Micro sized particles - [1] C.L. Li et al., Recovery of spent electroless nickel plating bath by electrodialysis, J. Memb. Sci. 157 (1999) 241–249. - [2] I. Giannopoulou and D. Panias, Copper and nickel recovery from acidic polymetallic - [3] aqueous solutions, Miner. Eng. 20 (2007) 753–760. - [4] R. Idhayachander and K. Palanivelu, Electrolytic recovery of nickel from spent electroless nickel bath solution, E-J. Chem. 7 (2010) 1412–1420. - [5] G. Orhan et al., Nickel recovery from the rinse waters of plating baths, Hydrometallurgy 65 (2002) - [6] J.R. Hernández-Tapia et al., Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents, J. Hazard. Mater. 262 (2013) 709–716. ### Anticorrosion for 304 Stainless Steel by Using TiO₂/Ag₂O Protection Layer Yung-Fu Wu*, Yung-Lin Chen, Wei-Teng Wang, Yu-Ya Lin Department of Chemical Engineering, Ming Chi University of Technology, Taiwan, *Corresponding Author: gausswu@mail.mcut.edu.tw #### **Abstract** In order to prevent the metal corrosion, the cathodic protection method is widely used through a sacrificial anode or an applied electrical current. However, applying electrical current or using sacrificial anode increase the usage of fossil fuel, and even cause the pollution of soil and underwater. In this study, an anticorrosion method combining the electrical current and non-sacrificial anode was therefore proposed. Our method is performed by coating the TiO₂ layer including Ag₂O, which can absorb solar energy to protect 304 stainless steel (304SS). The TiO₂/Ag₂O anticorrosive layer was fabricated using a blade. The resulted protection characteristics could be shown through the induced photocurrent of the TiO₂/Ag₂O layer and open circuit potential (OCP) of stainless steel. The specimen of stainless steel was immersed in a 3.5 wt.% NaCl solution for simulating the condition of metal in seawater. Under illumination of white light, negative changes in the OCP of 304SS by more than 600 mV from its initial value could be found. The negative shifts attribute to the transfer of photoelectrons from TiO₂/Ag₂O layer to 304SS. However, a pair of photoinduced electron and hole were generated, indicating that these photoelectrons may recombine with photo-induced holes easily. The photocurrent analysis show that adding citric acid as a hole scavenger can decrease the possibility of recombination and enhance the protection efficiency. Furthermore, the OCP shift for the TiO₂/Ag₂O layer also indicates the effect of the cathodic protection. An antibacterial experiment was conducted to test the feasibility of protection layer containing Ag from biological corrosion. The experimental results verified that the growth of Escherichia coli can be thoroughly inhibited by the TiO₂/Ag₂O layer. Consequently, the proposed layer hardly dissolves during the cathodic protection process, and meanwhile the proposed method can utilize solar energy, conforming to the goal of green process. Keywords: Anticorrosion, Antibacterial, Photoelectrochemical cathodic protection, Solar energy - [1] J. Hu et al., Corros. Sci., 2017, 125, pp 59-67. - [2] J. Jing et al., J. Electrochem. Soc., 2017, 164(13), C822-C830. - [3] Y. Liang et al., Electrochem. Commun., 2017, 77, pp 120-123. - [4] R. Techapiesancharoenkij et al., Surf. Coat. Technol., 2017, 320, pp 97-102. - [5] W. Zhang et al., Appl. Surf. Sci., 2017, 410, pp 547-556. - [6] Y. Bu et al., J. Alloys Compd., 2018, 731, pp 1214-1224. ### Fabrication of CuYO₂ Nanofibers by Electrospinning Kai-Chun Hsu¹, Chin-Wei Hung², Subramanian Sakthinathan¹, Te-Wei Chiu¹*, Fang-Yu Fan², Yung-Kang Shan² ¹ Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, ² School of Dental Technology, Taipei Medical University, *Corresponding Author: tewei@ntut.edu.tw #### Abstract In this work, $CuYO_2$ nanofibers were successfully prepared by the electrospinning method with post annealing process. First, the metal nitrate precursor is used to produce as-spun fiber via the electrospinning method, and annealed in air atmosphere to remove Polyvinylpyrrolidone, which was contained in $Cu_2Y_2O_5$ nanofibers. After that, $Cu_2Y_2O_5$ nanofibers were annealed in a nitrogen atmosphere to form $CuYO_2$ nanofibers. XRD and TEM SAED analysis confirmed that the product revealed various crystal phase of $CuYO_2$, $R\overline{3}m$ space group and $P6_3/mmc$ space group. Furthermore, SEM and TEM studies were used to observe the morphology and structure of $CuYO_2$ nanofibers, then apply to the methanol steam reforming produce for hydrogen production. The $CuYO_2$ nanofibers to confirm its catalytic ability and analyze the difference after catalysis. **Keywords:** Delafossite, CuYO₂ nanofibers, methanol steam reforming, Electrospinning, hydrogen production ### Preparation of Janus Structure ZnO/CuO Composite Oxide Particle Yu-Feng You, Chung-Lun Yu, Te-Wei Chiu* Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, *Corresponding Author: tewei@ntut.edu.tw #### **Abstract** The chemical solution was used to prepare copper oxide microspheres, which were then RF sputtered with zinc oxide nano-seed coating. Then, using the water bath process, zinc oxide nanowires were grown on the surface of copper oxide microspheres. The micron ZnO/CuO composite was successfully prepared. As copper nitrate and ammonium nitrate were used as copper oxide precursors, and then poloxamer (Pluronic P123) was added, the spherical micelles formed when put in a deionized water. The precursor of as-prepared zinc oxide was used zinc acetate and hexamethylenetetramine were dissolved in a deionized water until uniformly mixed. Finally, the ZnO/CuO micron composite material was prepared by radio frequency sputtering and water bath method. According to the suitable chararization analysis, the STEM images and TEM-EDS of ZnO/CuO micron composite revealed janus strcture. The zinc oxide nano-pillars were grown on the copper oxide micron spheres. The XRD result ZnO/CuO micron composite of exhibited the phases of zinc oxide copper oxide in diffraction pattern, respectively. Keywords: ZnO/CuO composite materials, CuO microspheres, ZnO nanorods, Hydrothermal, Sputter - [1] H. Su, C. A. Hurd Price, L. Jing, Q. Tian, J. Liu, K Qian. *Mater Today Bio*. 4 (2019) 100033. - [2] Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka, T. Majima. Nat Commun. 5 (2014) 1-9. # Effect of adding mesoporous silica KIT-6 of V₂O₅/WO₃/TiO₂ catalyst for selective catalytic reduction Shu-Yi Tsai 1*, Kuan-Zong Fung^{1,2}, Khoiril Metrima Firmansyah² ^{1*} Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan Department of Materials Science and Engineering, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC *Corresponding Author: willxkimo@yahoo.com.tw #### **Abstract** Nitrogen oxides (NO_x) has been a major pollutant for air pollution, which bring about photochemical smog, acid rain, ozone depletion and atmospheric deposition. Selective catalytic reduction (SCR) of NO_x with NH_3 is given more attention by researcher due to SCR is the most efficient and widest commercialized technologies for removal NOx emissions in exhaust gas from diesel engines. The key factors to improve the NOx conversion efficiency for these catalysts are the surface area and the active site. In this study, the V_2O_5 - WO_3 / TiO_2 catalysts containing different loadings of mesoporous silica KIT-6 were synthesized and characterized by X-ray diffraction, nitrogen adsorption, FTIR and NH_3 temperature programmed desorption. The catalyst with a KIT-6 loading of 6 wt% is very active in the SCR of NO with NH_3 at 300 °C, leading to an NO conversion of close to 90%. **Keywords:** mesoporous silica, selective catalytic
reduction, NO conversion #### References [1] Z.C. Wang, H.Y. Du, K. Li, J.X. Miao, M. Li, B. Xu, Experimental Research on Distribution Characteristics of NOx Conversion Efficiency of a Diesel Engine SCR Catalyst, Acs Omega 6(36) (2021) 23083-23089. # Synthesis of Bi₄O₅I₂/BiOI heterojunction with improved visible-light photocatalytic activity Huiwei Ding¹, *Qiaofeng Han² ¹PhD student, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China ²Professor, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China #### **Abstract** Photocatalysis has been deemed to be the green technology for pollutant degradation in water or air using solar energy. Constructing high-efficiency heterojunction has been considered as a promising method to enhance visible-light photocatalytic activity of single component. Pristine BiOI has a unique layered structure and a wide adsorption range, which endows it with excellent photocatalytic activity [1]. However, its narrow band gap results in the rapid recombination of photogenerated carriers. By forming a heterojunction with other materials, the separation efficiency of hole-electron pairs can be improved $^{[2,3]}$. In this work, a series of photocatalysts have been fabricated by adjusting pH in the presence of urea. Among those, $Bi_4O_5I_2/BiOI$ heterojunction obtained at pH = 5.30 exhibits the highest photocatalytic performance toward degradation of tetracycline (TC) under visible light irradiation. In addition, if using pure water as solvent, the photocatalytic activity is greatly reduced, which is because urea solution can facilitate the uniform dispersion of Bi^{3+} and induce homogeneous nucleation of nanoparticles. This work provides an rational route for design and fabrication of $Bi_4O_5I_2/BiOI$ heterojunction photocatalyst at room temperature for environmental remediation. Figure 1. (a) XRD pattern of $Bi_4O_5I_2/BiOI$; (b) Photocatalytic activity of the photocatalysts prepared at different pH values for the degradation of TC (30 mg L⁻¹) under visible light irradiation. **Keywords:** Bi₄O₅I₂/BiOI; Heterojunction; Urea solution; Photocatalyst. #### References [1] M.C. Long, P.D. Hu, H.D. Wu, Y.Y. Chen, B.H. Tan, W.M. Cai, Understanding the composition and electronic structure dependent photocatalytic performance of bismuth oxylodides, J. Mater. Chem. A, 3 (2015) 5592-5598. - [2] L.J. Cheng, X. Liu, Y. Kang, Bi₅O₇I/Bi₂O₃: A novel heterojunction-structured visible light-driven photocatalyst, Mater. Lett., 134 (2014) 218-221. - [3] M.Y. Zhang, N.J. Fang, X.C. Song, Y.H. Chu, S. Shu, Y.J. Liu, p-n heterojunction photocatalyst Mn_{0.5}Cd_{0.5}S/CuCo₂S₄ for highly efficient visible light-driven H-2 production, ACS Omega, 5 (2020) 32715-32723. # The effect of La₂O₃ addition on intermetallic-free aluminium matrix composites reinforced with TiC and Al₂O₃ ceramic particles Min Ao^{1.2}, Hui-min Liu^{1*}, Chao-fang Dong² ^{1*} Inner Mongolia Key Laboratory of Light Metal Materials, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, China ²Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China, *Corresponding Author: huimin 72@163.com #### **Abstract** Aluminum matrix composites reinforced by in situ particles exhibit high specific strength and stiffness, excellent wear resistance and thermal stability as well as attractive mechanical properties [1,2]. These outstanding properties are attributed to the reinforced phase and its in situ nucleation, growth, thermodynamic stability and contaminant-free enhanced surface, which are beneficial to the matrix. Many methods are used to fabricate aluminum matrix composites with in situ reinforced particles. Among them, self-propagating high-temperature synthesis, which has the advantage of simplicity and lower cost, has attracted much attention [3-5]. At present, a variety of reaction systems are used to prepare in situ particles with different shapes and sizes, such as the Al-Ti-C reaction system and the Al-Ti-B reaction system [6,7]. However, the large intermediate phase size and poor solubility of C in Al melt are problems in those reaction systems [8,9]. In this work, intermetallic-free aluminium matrix composites reinforced with TiC and Al₂O₃ ceramic particles were successfully prepared via an in situ reaction of Al-Ti-C-CuO-La₂O₃ during self-propagating high-temperature synthesis. The effect of adding the rare earth metal oxide La₂O₃ was studied by using differential scanning calorimetry, Xray diffraction, scanning electron microscopy, optical microscopy and Brinell hardness tests. The results showed that La₂O₃ could promote the wettability of the C and Al melt in the Al-Ti-C-CuO system. The final products of the in situ reaction for the 2.5Al-1Ti-1.2C-0.5CuO-0.005La₂O₃ system were TiC particles and Al₂O₃ particles, and the system was free of intermetallic compounds. The prepared aluminium matrix composites were greatly refined with an average grain size of 20.6 μm. The intermetallic-free aluminium matrix composites reinforced with TiC and Al₂O₃ particles showed up to two times higher Brinell hardness value than the matrix 6063 aluminium alloy. **Keywords:** Aluminium matrix composites, La₂O₃, TiC, Al₂O₃ - [1] J Singha, Ceram. Int., 42 (2016). - [2] J. Singh, J. Mater. Res. Tech., 3 (2) (2015). - [3] I.A. Ibrahim, J. Mater. Sci., 26 (5) (1991). - [4] G.B.V. Kumar, J. Miner. Mater. Charact. Eng., 10 (1) (2011). - [5] Z.Y. Fu, J. Mater. Process. Technol., 137 (1) (2003). - [6] M.S. Song, Mater. Sci. Eng., 473 (2008). - [7] J.F Nie, J. Alloy. Comp., 486 (2009). - [8] B. Yang, Mater. Des., 22 (8) (2001). - [9] H. Zhao, J. Alloy. Comp., 508 (1) (2010). # A Study of Low-Temperature Sintering of Al₂O₃ Ceramics with TiO₂ and Nb₂O₅ addition Jhen-Hau Jan¹, Annisa Oktaafianti², Choong Yen Voon³, Ying-Chieh Lee^{3*} ¹ Institute of Materials Science and Engineering, National Central University, Zhongli 32001, Taiwan. ² Department of Tropical Agriculture and International Cooperation, National PingTung University of Technology & Science, Ping-Tung 91201, Taiwan. #### **Abstract** The effects of TiO₂ and Nb₂O₅ dopant on the physical, mechanical, and dielectric properties of Al₂O₃ ceramics at sintering temperatures 1250~1500 °C were investigated. The results showed that TiO₂ doped into Al₂O₃ ceramics has a significant influence on microstructure and mechanical property at lower sintering temperatures (\leq 1500 °C). Besides, add an appropriate amount of Nb₂O₅ (>1.5 wt%) can further reduce the sintering temperature of TiO₂ doped-Al₂O₃ ceramics and keep good mechanical properties. When the sintering temperature decreased to 1350 °C, Al₂O₃-0.5%TiO₂ ceramics added with 1.5% Nb₂O₅ has higher relative density. However, the Nb₂O₅ addition will induce internal point-defects in the Al₂O₃ ceramics which causes the deterioration of mechanical properties. Al₂O₃-0.75% TiO₂ ceramics added 1.5% Nb₂O₅ at a sintering temperature of 1350 °C exhibited higher relative density 94%, compressive strength 1372 MPa, the abrasion rate 1.36×10⁻⁴ mm³/N•m. ³ Department of Materials Engineering, National PingTung University of Technology & Science, Ping-Tung 91201, Taiwan. *Corresponding Author ### Electrostatic separation for recycling silicon from the crushed photovoltaic modules Tzu-Hsuan Tsai 1*, Li-En Chen 1, Chih-Lung Lin 2, Teng-Yu Wang 2 ^{1*} Institute of Mineral Resources Engineering, National Taipei University of Technology, Taiwan ² Material and Chemical Research Laboratories; Industrial Technology Research Institute, Taiwan *Corresponding Author: tzhtsai@ntut.edu.tw #### Abstract The waste of PV modules increases substantially with approaching their end-of-life and becomes a serious problem. It is very important to develop a recycling method for solar cell modules. For recycling the waste of PV modules, the aluminum frame and junction box are disassembled from the module first, followed by separating glass, EVA and solar cells. In order to recover complete silicon cells and glass, the plastic encapsulation (such as EVA) is usually removed by chemical dissolution, thermal decomposition, or melting with heated blade etc. For just downcycling, mechanical crushing is also considered because this method with relatively low-energy consumption and low-carbon emission is eco-friendly and avoids most masses to be landfilled. This study chose the mixture particles from the crushed silicon photovoltaic modules as samples. The mixture contained glass, silicon and aluminum mainly, and the screened size was about 0.8~1 mm. Due to the difference of resistivity between glass, silicon and aluminum, they might be separated by electrostatic action. In order to make the particles of insulator (glass), semiconductor (Si) and conductor (AI) have different trajectories during electrostatic separation, and recover silicon from the mixture, many parameters need to be adjusted. We used computer-aided engineering to simulate the potential line and the electric field strength of the electrostatic separation system. The operating parameters included geometry, size, relative position and voltage etc. The simulation results show that under the same roller radius, the corona electrode is closer to the roller or the applied voltage is greater, resulting in a higher strength of electric field. When the operation is limited to a low voltage, the distance between the corona electrode and the roller can be reduced to obtain the similar strength of electric field. Under an appropriated distribution and strength of electric field, the insulator could attach on the roller, the conductor bounced off, and the silicon particles moved between them. ####
Keywords: Photovoltaic module, Electrostatic separation, Corona electrode, Silicon, Glass - [1] M. R. Islam, F. Rahman and W. Xu, Advances in Solar Photovoltaic Power Plants, Springer, p287-317 (2016). - [2] R. Deng, N. L. Chang, Z. Ouyang and C. M. Chong, A techno-economic review of silicon photovoltaic module recycling, Renewable and Sustainable Energy Reviews, 109, 532 (2019). # Novel Bi₂WO₆/g-C₃N₄/ZnO Z-scheme heterojunctions with g-C₃N₄ interlayer modulated by piezoelectric polarization for efficient piezo-photocatalytic decomposition of harmful organic pollutants Zihan Kang, Kanghui Ke, Enzhu Lin, Ni Qin*, Jiang Wu, Rui Huang and Dinghua Bao* State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China *Corresponding Author #### **Abstract** It is of great significance to understand the role of carrier in piezocatalysis of composites by studying the separation mode of carriers under dynamic polarization field. Herein, the separation and migration pathways of carriers under piezoelectric field are investigated by synthesizing heterojunctions with Bi_2WO_6 (BWO) nanosheets grown vertically on g-C₃N₄ (CN) coated ZnO nanorods and directly on ZnO. Compared with the photocatalysis, the piezocatalytic efficiency of Rhodamine B by BWO/ZnO is significantly increased to 0.121 min⁻¹, which indicated the polarization field promotes band tilt and Z-scheme formation. After introducing the CN interlayer, the piezocatalytic efficiency of BWO/CN/ZnO is further improved (0.217 min⁻¹), which can be attributed to the unique core-shell structure with Z-scheme heterojunctions. This unique structure provides more active sites and excited carrier concentration, the intermediate layer CN also reduces the direct contact and recombination of electrons and holes controlled by polarization potential at the interface between BWO and ZnO. This work deeply analyzes the influence of carrier concentration, separation efficiency and transport process on piezocatalysis, which provides a reference for the design of efficient catalyst. **Keywords:** Bi₂WO₆/g-C₃N₄/ZnO heterojunctions, Z-scheme structure, piezocatalysis, dye decomposition. ## Characerization of Graphene/CNTs Hybrid Conductive Film by Screen Printing Cheng-Ch Wu¹, Horng-Show Koo²* Ming-An Chung³ and Mi Chen¹* ^{1*}Department of Chemical and Materials Engineering, Minghsin University of Science and Technology, Taiwan ²Department of Electronics Engineering, Minghsin University of Science and Technology, Taiwan ³Department of Electronics Engineering, National Taipei University of Technology, Taiwan *Corresponding Author: chenmi@must.edu.tw #### **Abstract** In recent years, conductive paste have been widely used in the printed electronics industry, such as electronic circuit boards, 5G antennas, solar cells, flexible displays, and radio-frequency identification. Graphene and carbon nanotubes(CNTs) have excellent properties. In this study, Graphene and CNTs were added into surfactant and dissolved by solvent to prepare conductive paste. The dispersion of carbon materials and viscosity of conductive paste is the key technology for preparing conductive paste. In this study, various amount graphene were added into poly-vinylpyrrolidone(PVP) to prepare graphene conductive paste. Changing the CNTs amount doped into the optimal graphene addition parameter and prepared graphene/CNTs conductive paste. The conductive paste was printed on substrate by the screen printing method and then annealed to prepare a conductive film. Characterization were determined by Scanning Electron Microscope, Raman spectroscopy, Hall Effect measurement system, Thermo-gravimetric Analysis to obtain the optimal parameters of preparing high quality and electrical properties conductive paste. The results show that the printed conductive film could not completely cover the substrate, making the graphene sheets discontinuous of conductive film at low graphene addition amount. The lowest sheet resistance is 23.54 Ω/\Box of printed conductive film with 4 wt% graphene conductive. The printed conductive film of 0.5wt% CNTs and 4 wt% graphene hybrid conductive paste has the best electrical properties. The best sheet resistance of hybrid film is 15.87 Ω/\Box . So, this study can successful prepare high stability and conductivity graphene/CNTs hybrid paste for applications and fabrication low cost of electrical devices. Keywords: Graphene, CNTs, Conductive paste, Screen printing, Conductive film ### **Developments of Calcium Sulfate Coating on Ti6Al4V Substrate by Flame Spray** Wan-Chien Wu, Yung-Chin Yang* Institute of Materials Science and Engineering; National Taipei University of Technology, Taiwan *Corresponding Author: #### **Abstract** Due to the aging of global population, the demand of artificial joints is gradually rising. And in dental and orthopedic prosthesis, the outcome of the procedure depends greatly on the fixation of the implant. Covering the artificial joints with proper bio-ceramic can help the bone tissue grow into the porous structure. Thus, the purpose of this study is to create a ceramic-metal composites to accelerate the recovery after implanting. Calcium sulfate is a degradable bio-ceramics used widely as bone filler in current. It has good biocompatibility, no toxicity, osteoconductivity and abundant as well. In this study, calcium sulfate coating was successfully prepared on the Ti-6Al-4V substrate by flame spraying technique, and each property of the coating was analyzed. The experiment results showed that the bonding strength between substrate and calcium sulfate coating prepared by flame spraying could reach 37.02 MPa. The average porosity of the coating was 18.9% and the porous structure led the coating to rapid degradation and collapse. In the degradation test, the accumulated weight loss of the coating soaked in Hank's solution reached 100% on the fifth day. Besides, the high temperature of flame spray caused the calcium sulfate to decompose into calcium oxide and led the pH value of the SBF (simulated body fluid) to rise to 12 after 1 day of immersion. The power of flame spray was then lower to avoid the calcium oxide to appear. The pH value of the SBF after 1 day of immersion dropped to 11.3. **Keywords:** Thermal spray, Ca₂SO₄, bio degradable coating - [1] Y.C. Yang, E. Chang, Biomaterials, 22(13), 1827-1836 (2001). - [2] M.P. Chang, Y.C. Tsung, H.C. Hsu, W.H. Tuan, P.L. Lai, Ceramics International, 41, 657-664 (2015). ## High entropy piezo-catalyst oxide for dye-degradation Ti Hsin¹, Pao-Wen Shao¹, Ying-Hao Chu^{1,2,3*} Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan *Corresponding Author: yhc@nctu.edu.tw #### **Abstract** As the contamination in soil, water and air keeps increasing, the remediation of the environmental contamination has become an important issue. However, the mainstream solution for water pollution decomposition, which is a photocatalyst, is limited by the absorption efficiency and the intermittency of visible light. Hence, this research intends to use the piezoelectric effect to fabricate a composite high-entropy piezoelectric catalyst, so that the organic pollutants in the water can be effectively decomposed by vibrational stimuli in a non-illuminated environment. With pulsed laser ablation in liquid (PLAL) and pulsed laser deposition (PLD) technique, Pb(Mg, Nb, Ti, Hf, Zr)O₃ nanoparticles and thin films that possess piezoelectric, ferroelectric, and high-entropy lattice distortion effects can be successfully produced. Through the central asymmetric structure, the internal electric field is modulated by vibrational stimuli, thus an additional radical is produced to achieve charge neutrality at boundary condition i.e. surface, and due to high specific surface area, the dye degradation efficiency could therefore be enhanced. The piezoelectric catalyst of this research induces multiple cations which can increase the activity of the catalyst, and the stability of redox reactions would not be affected by environmental factors such as intensity of illumination. It maintains high efficiency in dye degradation and provides a more effective method for dealing with industrial wastewater. Keywords: contamination remediation, piezoelectric catalyst, high entropy oxides, PLAL, PLD P. Photovoltaic/Solar power P_P01 # Synthesis and Characteristic of III-VI Metal Chalcogenide semiconductor nanoparticle Chien-Chih Chiang^{1*}, Jeou-Long Lee¹, Ta-Lun Sung¹, Jui-Chang Chen¹, Chin-Yen Chang¹, Chih-Chun Kuo¹ ¹ Department of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, *Corresponding Author: *CCChiang@gm.lhu.edu.tw* #### **Abstract** Metal chalcogenide semiconductor nanostructures show novel electronic, physical, optical, and magnetic properties that are controllable by their composition and stoichiometry. III-VI metal chalcogenide, In_2Se_3 and Ga_2Se_3 have been studied as important materials to CIGS solar cells, water splitting, and optical applications. However, despite all of these attractive properties, but the material is not ready for mass production yet. Many different methods have been employed to prepare In_2Se_3 films, including co-evaporation from elemental sources, sputtering, or annealing of metal and Se multilayers. In this paper, a simply, low cost preparation method was being investigated by using chemical precipitation method and annealing in Se vapor environment at difference temperature to synthesis In_2Se_3 and Ga_2Se_3 nanoparticle. In, Ga metal or In_2O_3 , Ga_2O_3 are dissolved in nitric acid and the resulting solution with the total
concentration of the cation of 0.04 M. A precipitation process, with 0.2 M ammonium hydrogen carbonate (AHC) as the precipitation agent. After precipitation process, the carbonate precipitate then was calcined with Se powder and calcined at 500 30min under a H_2 atmosphere. From SEM result, the precursor, $In(OH)_3$ synthesized by NH_4HCO_3 , present nanoscale morphology. It provides high surface area to react Se vapor and transfer to In_XSe_y . XRD and SEM show the pure phase In_2Se_3 and present uniform morphology after repeat 4 times selenization process. Nano-ink preparation and thin film formation by non-vacuum printing process will be also discussed in this study. **Keywords:** metal chalcogenides, In₂Se₃, selenization process - [1] Yi-Ying Lu, Chuan-Ruei Guo, Hui-Lin Yeh, He-Wen Chen, Chien-Cheng Kuo, Jui-Hung Hsu, Jie Jhou, Yan-Ting Huang, Shang-Hsien Hsieh, Chia-Hao Chen, Ching-Hwa Ho, Raman Sankar, Fang-Cheng Chou. Multilayer GaSe/InSe Heterointerface-Based Devices for Charge Transport and Optoelectronics. ACS Applied Nano Materials 2020, 3 (12), 11769-11776 - [2] Miaomiao Yu, Yunxia Hu, Feng Gao, Mingjin Dai, Lifeng Wang, PingAn Hu, Wei Feng. High-Performance Devices Based on InSe–In_{1-x}GaxSe Van der Waals Heterojunctions. ACS Applied Materials & Interfaces 2020, 12 (22), 24978-24983 - [3] He Liu, Miaomiao Yu, Fanglu Qin, Wei Feng, PingAn Hu. Two-Dimensional Nonlayered CuInSe2 Nanosheets for High-Performance Photodetectors. ACS Applied Nano Materials 2018, 1 (10), 5414-5418. P-P02 # Characteristics of La³⁺ dopants in CeO₂ thin films for resistance random access memory application Gu-Yan Liao¹, An-Cheng Aidan Sun², and Sea-Fue Wang^{1*} #### **Abstract** In this study, a 60 nm-thick CeO₂ film was prepared by RF magnetron sputtering as an insulating layer for Resistive random access memory (RRAM) device application. The upper and lower electrodes in the device are pure Pt thin film with a thickness of 120 nm. Unipolar measurements were performed to understand the nature of the device's resistance transition condition. Results showed that around 12.9 V was the forming voltage of the conduction path and is unstable during the resistance conversion process and cannot be maintained well during 10⁴ sec retention tests. Doping La into the CeO₂ thin film led to the improvement of the configuration conversion stability. Additionally, the doping also resulted to the forming voltage reduction which can be attributed to the increased amount of oxygen vacancy. The XPS analysis showed that for CeO₂ films, Ce exists in both trivalent and tetravalent energy states combined with oxygen. The resistance switching mechanism of CeO₂ film is based from the conducting filament (CF) theory which is explained by the formation and rupture of the CF wherein the device is switched between low resistance state (LRS) and high resistance state (HRS). This work highlights the potential use of CeO₂ films for RRAM application. Keywords: Resistive random access memory (RRAM), Conductive filament, doping ¹ Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan ² Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, 32003 Taiwan *Corresponding Author: sfwang@ntut.edu.tw # **Contact Information** # Keynote Speaker | No. | Corresponding Author | Insitution | Country | E-mail | |-----|---------------------------|---|---------|--| | K_1 | Prof. Chun-Hway Hsueh | National Taiwan University | Taiwan | hsuehc@ntu.edu.tw | | K_2 | Prof. Tatsumi Ishihara | Kyushu University | Japan | ishihara@cstf.kyushu-u.ac.jp | | K_3 | Dr. Yasser Ashraf Gandomi | Massachusetts Institute of Technology | USA | ygandomi@mit.edu,
y.a.gandomi@gmail.com | | K_4 | Prof. Hong Wang | Southern University of Science and Technology | China | wangh6@sustech.edu.cn | ### **Invited Speaker** | No. | Corresponding Author | Insitution | Country | E-mail | |-------|--------------------------------|--|-----------|----------------------------------| | A_I01 | Prof. Subramanian Sakthinathan | National Taipei University of
Technology | Taiwan | sakthinathan1988@gmail.com | | B_I01 | Dr. Van-Nghia Nguyen | Hanoi Architectural University | Vietnam | nghianv@hau.edu.vn | | B_I02 | Dr. Manas Ranjan Panda | Monash University | Australia | manas.panda@monash.edu | | B_I03 | Dr. Debasmita Dwibedi | Tokyo University | Japan | debasmita@g.ecc.u-tokyo.ac.jp | | B_I04 | Dr. Van-Duong Dao | Phenikaa University | Vietnam | duong.daovan@phenikaa-uni.edu.vn | | B_I05 | Prof. Tungabidya Maharana | National Institute of Technology,
Raipur, India | India | tmaharana.chy@nitrr.ac.in | | B_I06 | Prof. Prabeer Barpanda | Indian Institute of Science (IISc), India | India | prabeer@iisc.ac.in | | B_I07 | Dr. Tran V. Thu | Le Quy Don Technical University | Vietnam | tranvietthu@gmail.com | | B_I08 | Prof. P Muhammed Shafib | Yeungnam University | Korea | shafiparasseri@ynu.ac.kr | | B_I09 | Prof. Prasant Kumar Nayak | SRM Institute of Sceince and Technology, India | India | prasantn1@srmist.edu.in | | E_I01 | Prof. Horng-Show Koo | Taipei University of Marine Technology | Taiwan | frankkoo@must.edu.tw | | E_I02 | Dr. Alice EH Lee Sie | Nanyang Technological University | Singapore | aliceeh@ntu.edu.sg | | E_I03 | Prof. Meng-Fang Lin | Ming Chi University of Technology | Taiwan | mflin@mail.mcut.edu.tw | | F_I01 | Prof. Naoki Wakiya | Shizuoka University | Japan | wakiya.naoki@shizuoka.ac.jp | | F_I02 | Dr. Kuan-Ting Wu | Kyushu University | Japan | kt_wu@cstf.kyushu-u.ac.jp | | F_I03 | Prof. Yen-Yu Chen | Chinese Culture University | Taiwan | cyy15@ulive.pccu.edu.tw | | F_104 | Prof. Francesco Ciucci | Hong Kong University of Science and Technology | France | mefrank@ust.hk | | H_I01 | Prof. Kungen Teii | Kyushu University | Japan | teii@asem.kyushu-u.ac.jp | | H_I02 | Prof. Masahiro YOSHIMURA | National Cheng Kung University | Japan | yoshimur@ncku.edu.tw | | L_I01 | Prof. Sakthivel Gandhi | SASTRA University | India | sakthivel@scbt.sastra.edu | | M_I01 | Prof. Shan-Tao Zhang | Nanjing University | China | stzhang@nju.edu.cn | | M_I02 | Prof. Nobuhiro Matsushita | Tokyo Institute of Technoogy | Japan | matsushita.n.ab@m.titech.ac.jp | | P_I01 | Dr. Ngoc Duy Pham | Macquarie University | Australia | ngocduy.pham@mq.edu.au | | P_I02 | Dr. Al Jumlat Ahmed | University of Wollongong | Australia | jumlat@gmail.com | | P_I03 | Prof. Hongxia Wang | Queensland University of Technology | Australia | hx.wang@qut.edu.au | # Oral Speaker | No. | Corresponding Author | Insitution | Country | E-mail | |-------|----------------------------|--|-----------|--| | B_001 | Mr. Debabrata Mohanty | Yuan Ze University | Taiwan | debabratamohanty1997@gmail.com | | B_002 | Mr. Jeng-Kuei Chang | National Yang Ming Chiao Tung
University | Indonesia | hernandha.en07@nycu.edu.tw,
herozh94@gmail.com | | B_003 | Mr. Cheng-Chia Chen | Nation Yang Ming Chiao Tung
University | Taiwan | marttrix.mse04@nctu.edu.tw,
marttrix@gmail.com | | B_004 | Dr. Chinghuan Lee | National Cheng Kung University | Taiwan | alex.chl.cera@gmail.com,
n58941155@gs.ncku.edu.tw | | B_O05 | Prof. Tzu Husan Chiang | National United University | Taiwan | thchiang@nuu.edu.tw | | B_O06 | Dr. Ngoc Thanh Thuy Tran | National Cheng Kung University | Indonesia | tranntt@phys.ncku.edu.tw,
thuytran74vn@gmail.com | | E_001 | Prof. Hsin-Yi Tiffany Chen | National Tsing Hua University | Taiwan | hsinyi.tiffany.chen@gapp.nthu.edu.tw | | E_002 | Ms. Ying-Hao Chu | National Yang Ming Chiao Tung
University | Taiwan | crag418@gmail.com | | E_003 | Mr. Feng Sheng Chao | Feng-Chia university | Taiwan | a0938260623@gmail.com | | E_004 | Dr. Deng-Li Ko | National Yang Ming Chiao Tung
University | Taiwan | kolightlight@gmail.com | | F_001 | Mr. Azam Khan | Yuan Ze University | Taiwan | chemistazam92@gmail.com | | F_002 | Prof. Liangdong Fan | Shenzhen University | China | fanld@szu.edu.cn | | L_001 | Ms. Pei-Tzu Cheng | National Taiwan Ocean University | Taiwan | 0076A042@gmail.com | | L_002 | Henni Setia Ningsih | National Taiwan University of Science and Technology | Taiwan | hennisetianingsih@gmail.com | | M_001 | Mr. Yu-Lin Kuo | National Taiwan University of Science and Technology | Taiwan | gtrm3gts@gmail.com | | M_002 | Mr. Asit Kumar Panda | National Taipei University of
Technology | Taiwan | asitpanda@gmail.com | | M_003 | Mr. Lien-Hui Kan | National Taiwan Ocean University | Taiwan | sirius28880147@gmail.com | | P_001 | Ms. Akira Yamakata | National Chung Hsing University | Taiwan | wen139721@gmail.com,
wen139721@gmail.com | ### **Poster Session** | No. | Corresponding Author | Insitution | Country | E-mail | |-------|--------------------------|--|---------|--| | A_P01 | Hairus Abdullah | National Taiwan University of Science and Technology | Taiwan | dhkuo@mail.ntust.edu.tw;
hairus@mail.ntust.edu.tw | | A_P02 | Prof. Chi Yuan Lee | Yuan Ze University | Taiwan | cylee@saturn.yzu.edu.tw | | A_P03 | Prof. Chi Yuan Lee | Yuan Ze University | Taiwan | cylee@saturn.yzu.edu.tw | | A_P04 | Mr. Jui Teng Lee | National Cheng Kung University | Taiwan | andy6790769@yahoo.com.tw | | B_P01 | Prof. Tai Feng Hung | Ming Chi University of Technology | Taiwan | taifeng@mail.mcut.edu.tw,
taifeng@cycu.org.tw | | B_P02 | Mr. Te-Wei Chiu | National Taipei University of
Technology | Taiwan | dvasukalyan@gmail.com | | B_P03 | Mr. Karthi Keyan Arjunan | National Taipei University of
Technology | Taiwan | karthikeyan100596@gmail.com,
t108a09417@ntut.edu.tw | | B_P04 |
Mr. Zhen Chong | National Cheng Kung University | Taiwan | e54077029@gs.ncku.edu.tw, chong-zhen-
135@hotmail.com
chong-zhen-135@hotmail.com | | B_P05 | Prof. Chi Yuan Lee | Yuan Ze University | Taiwan | cylee@saturn.yzu.edu.tw | | B_P06 | Mr. Jen Hao Yang | National Cheng Kung University | Taiwan | show27180557@gmail.com | | B_P07 | Dr. Xiejing Luo | University of Science and Technology
Beijing | China | USTBlxjing@163.com, 1563327132@qq.com | | B_P08 | Mr. Jia-Hong Du | National Cheng Kung University | Taiwan | song091011@gmail.com | | B_P09 | Mr. Yu Hsuan Su | Academia Sinica | Taiwan | a810808a@gmail.com | | B_P10 | Hsieh Zih Heng | National Cheng Kung University | Taiwan | pigs0602pigs@gmail.com | | B_P11 | Ms. Yi-Hung Wang | Yuan Ze University | Taiwan | s1105204@mail.yzu.edu.tw | | B_P12 | Mr. Debabrata Mohanty | Yuan Ze University | Taiwan | laijy0110@gmail.com | | | | | , | | |-------|---------------------|--|--------|--| | B_P13 | Mr. Jing-Yu Lai | Yuan Ze University | Taiwan | laijy0110@gmail.com | | B_P14 | Mr. Jing-Yu Lai | Yuan Ze University | Taiwan | laijy0110@gmail.com | | E_P01 | Ms. Enzhu Lin | Sun Yat-Sen University | China | enzhulin@qq.com | | E_P02 | Mr. Tung-Wei Chang | Yuan Ze University | Taiwan | www.evo66@gmail.com | | E_P03 | Chang Chun Cheng | National Chung Hsing University | Taiwan | fhlu@nchu.edu.tw | | E_P04 | Prof. Te-Wei Chiu | National Taipei University of
Technology | Taiwan | tewei@ntut.edu.tw | | E_P05 | Prof. Te-Wei Chiu | National Taipei University of Technology | Taiwan | tewei@ntut.edu.tw | | F_P01 | Prof. Chi Yuan Lee | Yuan Ze University | Taiwan | cylee@saturn.yzu.edu.tw | | F_P02 | Mr. Wei Cheng Chin | National Taipei University of
Technology | Taiwan | t108408038@ntut.org.tw | | F_P03 | Mr. Kuan Lin Chen | Yuan Ze university | Taiwan | s1070917@mail.yzu.edu.tw | | F_P04 | Prof. Yen-Yu Chen | Chinese Culture University | Taiwan | cyy15@ulive.pccu.edu.tw | | F_P05 | Mr. Jhih Yu Tang | National Cheng Kung University | Taiwan | jacky71609@gmail.com | | F_P06 | Mr. Yuan Jie Tsai | National Cheng Kung University | Taiwan | s5764ru1@gmail.com | | F_P07 | Prof. Sheng-Wei Lee | National Central University | Taiwan | swlee@g.ncu.edu.tw | | F_P08 | Dr. Chia-Chieh Shen | Yuan Ze University | Taiwan | ccshen@saturn.yzu.edu.tw | | F_P09 | Prof. Liangdong Fan | Shenzhen University | China | fanld@szu.edu.cn | | F_P10 | Prof. Liangdong Fan | Shenzhen University | China | fanld@szu.edu.cn | | F_P11 | Ms. Azam Khan | Yuan Ze university | Taiwan | KYCERIN@gmail.com | | F_P12 | Ms. Ko-Yun Chao | Yuan Ze university | Taiwan | KYCERIN@gmail.com | | F_P13 | Ms. Ko-Yun Chao | Yuan Ze university | Taiwan | KYCERIN@gmail.com | | F_P14 | Mr. Takeshi Kawai | Shizuoka University | Japan | wakiya.naoki@shizuoka.ac.jp | | F_P15 | Mr. Haruki Zayasu | Shizuoka University | Japan | wakiya.naoki@shizuoka.ac.jp | | F_P16 | Mr. Kaoru Ogata | Shizuoka University | Japan | wakiya.naoki@shizuoka.ac.jp | | F_P17 | Mr. Kazuto Yoshida | Shizuoka University | Japan | yoshida.kazuto.17@shizuoka.ac.jp | | F_P18 | Mr. Ryoya Nishimura | Shizuoka University | Japan | nishimura.ryoya.17@shizuoka.ac.jp | | F_P19 | Mr. Seiji Sogen | Shizuoka University | Japan | sogen.seiji.17@shizuoka.ac.jp | | F_P20 | Mr. Ayano lizuka | Shizuoka University | Japan | wakiya.naoki@shizuoka.ac.jp | | F_P21 | Yi-Chu Han | National Taipei University of Technology | Taiwan | ycyang@ntut.edu.tw | | F_P22 | Mr. Yi-Le Liao | National Taipei University of
Technology | Taiwan | sfwang@ntut.edu.tw | | H_P01 | Mr. Yi Hsiang Lai | Tatong University | Taiwan | eric1998041141@yahoo.com.tw | | H_P02 | Chien-Chih Chiang | Lunghwa University of Science and Technology | Taiwan | CCChiang@gm.lhu.edu.tw | | H_P03 | Mr. Kal Yo Huang | Nation Taipei University of Technology | Taiwan | ww456258045@gmail.com | | H_P04 | Mr. Ming Zhe Lu | National Taipei University of Technology | Taiwan | handle0617@gmail.com | | H_P05 | Gourav Mundhra | National Institute of Technology Durgapur | India | gourav.nitdurgapur.mse17@gmail.com | | H_P06 | Mr. Tsung Yang Ho | National cheng kung university | Taiwan | scarletdevil100@gmail.com | | H_P07 | Chien-Chih Chiang | Lunghwa University of Science and Technology | Taiwan | CCChiang@gm.lhu.edu.tw | | H_P08 | Bo-Cheng Lai | National Taipei University of Technology | Taiwan | sfwang@ntut.edu.tw | | L_P01 | Prof. Mu Tsun Tsai | National Formosa University | Taiwan | mttsai@ms22.hinet.net, mttsai@nfu.edu.tw | | L_P02 | Prof. Mu Tsun Tsai | National Formosa University | Taiwan | mttsai@ms23.hinet.net, mttsai@nfu.edu.tw | | L_P03 | Chien-Chih Chiang | Lunghwa University of Science and Technology | Taiwan | CCChiang@gm.lhu.edu.tw | | M_P01 | Mr. Chung-Lun Yu | National Taipei University of
Technology | Taiwan | t109789003@ntut.edu.tw,
samweo909li@gmail.com | | M_P02 | Mr. Zhen-Yu Sun | National Taipei University of
Technology | Taiwan | erice0720@gmail.com | | | | | | | ACTSEA 2021 Nov. 15 – Nov. 17, 2021, Taipei, Taiwan. | M_P03 | Prof. Yung-Fu Wu | Ming Chi University of Technology | Taiwan | gausswu@mail.mcut.edu.tw | |-------|-------------------------|--|--------|---| | M_P04 | Prof. Yung-Fu Wu | Ming Chi University of Technology | Taiwan | gausswu@mail.mcut.edu.tw | | M_P05 | Ms. ChinWei Hung | Taipei Medical University | Taiwan | b210106052@tmu.edu.tw | | M_P06 | Mr. Feng Yu You | National Taipei University of
Technology | Taiwan | t106331001@ntut.org.tw | | M_P07 | Dr. Shu-Yi Tsai | National Cheng Kung University | Taiwan | willxkimo@yahoo.com.tw | | M_P08 | Prof. Qiaofeng Han | Nanjing University of Science and Technology | China | 2088329124@qq.com, 2088329124@qq.com | | M_P09 | Dr. Min Ao | University of Science and Technology
Beijing | China | aomin@xs.ustb.edu.cn | | M_P10 | Prof. YingChieh Lee | National Pingtung University of Science and Technology | Taiwan | mlcc120202@gmail.com | | M_P11 | Mr. Li-En Chen | National Taipei University of
Technology | Taiwan | aa09305758901@gmail.com | | M_P12 | Ms. Zihan Kang | Sun Yat-Sen University | China | kangzihan321@163.com | | M_P13 | Prof. Mi Chen | Minghsin University of Science and Technology, Taiwan | Taiwan | chenmi@must.edu.tw | | M_P14 | Wan-Chien Wu | National Taipei University of
Technology | Taiwan | ycyang@ntut.edu.tw | | M_P15 | Sea-Fue Wang | National Taipei University of
Technology | Taiwan | sfwang@ntut.edu.tw | | P_P01 | Prof. Chien-Chih Chiang | Lunghwa University of Science and Technology | Taiwan | CCChiang@gm.lhu.edu.tw, CCChiang@live.com | | P_P02 | Sea-Fue Wang | National Taipei University of
Technology | Taiwan | sfwang@ntut.edu.tw |